Multigrid

optimal solvers for linear and nonlinear elliptic PDEs

Ed Bueler

UAF Math 692 Scalable Seminar

Spring 2023

Ed Bueler Multigrid Spring 2023 1/37



Outline

0 examples: two elliptic PDE problems

9 simple iterations?

e 2-grid method, and the coarse-grid correction
© V-cycle multigrid

e nonlinear multigrid

Ed Bueler Multigrid Spring 2023 2/37



a linear PDE problem

@ | will consider only two PDEs today w=0

1. Poisson problem
2. minimal surface problem

@ elliptic boundary-value problems
@ recall Laplacian u=0 ~Vu=f u=0

V2u=V-(Vu)

o in2D: VU= Uy + Uy
o V2 is a negative-definite operator

1. Poisson problem
for a given source function f(x, y), find u(x, y) so that

—V2u="fonQ, =0

U‘aﬂ
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a nonlinear PDE problem

@ the second problem is nonlinear, but still elliptic
@ claim 1. the area of surface z = v(x, y) over Qs

Iv:/ 1+|Vv|2dxd
[v] Q\/ V| ly

@ claim 2. for given g, continuous along 012,

u= _min [[v] ,
{v:v|sa=g}

solves the boundary value problem below

2. minimal surface problem
for given boundary function (wire frame) g(x, y), find u(x, y) so that

Vu
V| ———— ] =00nQQ, u}m:g
V1 +|Vul?
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finite difference discretization

@ PDEs are infinite-dimensional problems, but g=my 1
discretization yields finite systems of equations

@ for example, finite differences (FD):

f”(X): f(X+h)_2fl‘$2X)+f(X_h)+o(h2) j:?:()

i=my—1"

@ assume: Q = (0,1) x (0, 1)

@ grid spacings: hy = ——, hy =

@ grid points: (x;, ¥j) = (Ihx,jh ) for
i=0,....my—-1andj=0,....m, —1

@ 5-point stencil for the Laplacian: ]

1
my,—1

Ui—1,j — 2Uj + Uiprj | Uij—1 — 2U5 + Ui jy1
VZU(X,',y/')% =1 2U + J+ ) 2’/ L+
he h
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PDE — linear system Au=Db

@ FD discretize —V2u = f:
o note we keep the boundary values in the system FIRTR LS - S (.
o N = mym, total unknowns on the grid

@ my =4, my = 3 shown at right

;) 0 1 2 3
o unknowns {u;} are globally ordered: u, = u; o 1 2
@ get a linear system for u € RV:
Au=b S
A e RNV is sparse
A has positive diagonal Lt

A is symmetric positive definite
Ahas O(1) nonzeros per row < at most 5, actually
b € RN has entries b, = f(x;, y;)

@ for my = my, = 5: 9 non-trivial eqns (middle right)
@ for my = m, = 8: 36 non-trivial eqns (lower right)

O O O O O
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goal: solve Au = b in O(N) work

@ the linear system Au = b can be set-up using 6N memory locations
o Ahas 5 nonzero entries per row, plus one entry of b

@ can we solve Au = b in O(N) work and time as N — co?
o if so, the solver is optimal
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goal: solve Au = b in O(N) work

@ the linear system Au = b can be set-up using 6N memory locations
o Ahas 5 nonzero entries per row, plus one entry of b

@ can we solve Au = b in O(N) work and time as N — co?
o if so, the solver is optimal

@ Ais banded, with bandwidth ~ min{my, m,} ~ VN
o s0 banded Gaussian elimination will solve in O(N?)
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goal: solve Au = b in O(N) work

@ the linear system Au = b can be set-up using 6N memory locations
o Ahas 5 nonzero entries per row, plus one entry of b

@ can we solve Au = b in O(N) work and time as N — co?
o if so, the solver is optimal

@ Ais banded, with bandwidth ~ min{my, m,} ~ VN
o s0 banded Gaussian elimination will solve in O(N?)

@ let’s back up and ask:

what operations using our A are obviously O(N)?
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cheap O(N) operations: mat-vec and residual

@ for A from PDE discretization, we can compute Av in O(N) flops
o this is because A has O(1) nonzero entries per row

@ also the residual is O(N)

Definition
given v € RV, the residual for the linear system Au = b is

r(v)=b— Av

observe that:

Au

J

r(u)=0
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are simple iterations cheap O(N) operations?

Definition

for the linear system Au = b and an invertible matrix M € RN*N, simple
iteration is
Vi1 = Vg + M1 (b = AVk)
——
=r(Vk)

@ « € Ris a tuning parameter, with default o = 1
@ if M= Aand a =1 then vk ¢ = u, so one iteration solves it!
o ...not practical, and usually not O(N)
@ Richardson iteration Vi1 =Vg+ ar(vg) isthe M =[case
o observation: Richardson iteration for the Poisson equation is gradient
descent for the quadratic functional  /[v] = « %|Vv|2 —fv

o each Richardson iteration is clearly O(N) work

@ a simple iteration is O(N) ... if M is the right kind of matrix!
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preconditioned linear systems

Definition
if a matrix or linear map M € RV*N is invertible, we say
M~'Au=M"b

is a (left-) preconditioned system for Au=b

@ the preconditioned system has the same solutions as before
@ the new residual is f(v) = M~'b — M~'Av

@ observation: Richardson iteration on the new system is equivalent to
simple iteration

Vit =Vk 4+ af(V) <= Vi =V +aM (b — Av)
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fast preconditioners?

Definition

a matrix or linear map M is a fast preconditioner if solving Mz = ¢ requires
O(N) work

@ example: if A has nonzero diagonal entries, the diagonal M = D is a fast
preconditioner

@ do not actually form the matrix M—" when solving Mz = ¢
@ warning: a preconditioner M can be fast without being a useful tool!

@ preconditioning is an apparently simple idea, but in the 21st century it is
used all over the space of solvers
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O(N) simple iterations: Jacobi and Gauss-Seidel

@ suppose we split A into diagonal and triangular parts:
A=D+L+U
@ the linear system can be rearranged using the splitting:

Au=b <<= Du=b-—(L+ U)u
<~ u=u+D"(b-Au)

@ solving Dz = ¢ is O(N)

Definition
a Jacobi iteration applies a fast preconditioner:

Vi1 = Vi + D1 (b = AVk)
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O(N) simple iterations: Jacobi and Gauss-Seidel

@ suppose we split A into diagonal and triangular parts:
A=D+L+U
@ the linear system can be rearranged using the splitting:

Au=b << (D+Lju=b-Uu
— u=u+(D+L)"(b- Au)

@ solving (D + L)z = ¢ is O(N) (for our A)

Definition
a Gauss-Seidel (GS) iteration applies a fast preconditioner:

Vk+1 = Vi + (D + L)71 (b = AVk)
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example of Gauss-Seidel iteration

@ the matrix-splitting view obscures the simplicity of Gauss-Seidel?
@ example: consider the linear system Au = b with

2 -1
-1 2 -1 b
1 2 1 b,
A= . b= |bs
1 2 - by
L _1 2 -

in this case, Gauss-Seidel iteration computes

ket) b 1 e
=g g (VT v
this is a relaxation method . .. update v; using average of neighbors
one can prove this method converges

this example is relevant because A ~ —V2in 1D

[e]

O O O
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Jacobi and Gauss-Seidel iterations as solvers

@ for the Poisson problem linear
system Au = b, one can prove

100 @

that Gauss-Seidel and Jacobi ol

converge *

@ but, after initial progress, residual o

norm decrease is agonizingly \
slowly on fine grids

residual norm

@ these simple iterations stagnate

\ stagnation
Lo
1.0 “‘ ....
: : i ..'o

@ an iteration vx 1 = ¢(Vvk) 0s \ ‘-...’..
stagnates or stalls if the ratio of j=——what we want LTI
successive residual norms 53 & 5 & 1 1 =
{IIr(vice 1)l /1IF(vic) ||} goes to one
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Ed Bueler

Jacobi and Gauss-Seidel iterations as solvers

@ for the Poisson problem linear
system Au = b, one can prove

100 @

that Gauss-Seidel and Jacobi
converge

5.0

@ but, after initial progress, residual

norm decrease is agonizingly
slowly on fine grids

\

\

\

\
e
)

\

\

1

residual norm

-
o

@ these simple iterations stagnate
@ an iteration vx 1 = ¢(Vvk) 05
stagnates or stalls if the ratio of {=——what we want
successive residual norms LT
{lIr(vi+1)1l/llr(vi)[I} goes to one

stagnation
°e
°

O
L LTYON
L)
9 12 15 18

iteration

21 24

27 30

@ Achi Brandt, an inventor of multigrid:

Stalling numerical processes must be wrong.
Whenever the computer grinds very hard for

small or slow effect, there must be a better
way to achieve the same goal.

Multigrid
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Jacobi and Gauss-Seidel iterations as smoothers

@ observation: .
functions become
much smoother
after a few

iterations — X
@ the first multigrid \/
paper (Federenko,

1961) observed / [ \

this?
Jacobi a = £ Jacobi Gauss-Seidel
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Jacobi and Gauss-Seidel iterations as smoothers

@ observation:
functions become
much smoother

after a few 2
iterations 3
@ the first multigrid
paper (Federenko, i . .
1961 ) Observed low freq. I high freq. '
this? / J \
Jacobi a = £ Jacobi Gauss-Seidel
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grid transfers

@ multiple grid resolutions will allow us to exploit smoothers to generate fast
solutions, but we need grid transfer operators between the different grids

restrict

prolong
P

@ for a function v defined on a finer grid, define its restriction Rv to a
coarser grid to be its value on the coarse grid points (injection), or restrict
by averaging onto the coarser grid (full weighting)

@ for a function w defined on the coarser grid, define its prolongation Pw to
a finer grid by (linear) interpolation

@ R, P are linear operators

o R, P are rectangular (non-square) matrices
o RP = I, or approximately so
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2-grid method

@ put these ideas together!

@ the 2-grid method approximately solves the PDE on the finer grid:

def twogrid(v,pre=2,post=2):

for k in range (pre):
v = smooth (A,b, V)

rc restrict (b - Axv)

ec = solve(Ac,rc)

v = v + prolong(ec)

for k in range (post):
v = smooth (A,b,v)

return v

@ where
A,b = discretize (m,m)
Ac,_ = discretize(m/2,m/2)

@ smooth () does one Jacobi or GS iteration

# solve error equation

# fine grid
# coarse grid

@ solve () might be Gaussian elimination, etc., for A°e® =r°
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the error equation

@ what do | mean by the error equation?
@ for the linear system Au = b, consider some v which is not a solution

Definition

for any vector v, the error equation corresponding to the linear system Au=b
is the equation

Ae =r(v)
@ here’s the logic:
e=u-—v definition of the error
Ae = Au — Av multiply by A
Ae=b — Av =r(v) error equation
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the coarse grid correction

@ the essential 3 lines in twogrid () form a coarse-grid correction:

rc = restrict (b — Axv) # restrict the residual
ec = solve(Ac,rc) # coarse-grid solve
v = v + prolong(ec) # add back as correction

@ this is a kind of simple iteration: V<V + P(A°)"TR(b — Av)
@ define the coarse-grid correction matrix:

B® = P(A°)'R
@ so0 twogrid () mixes two flavors of simple iteration:
Vv MT(b—Av) the smoother
vV« v+ B°b— Av) the coarse-grid correction

@ QisB°~A1?
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the coarse grid correction

@ the essential 3 lines in twogrid () form a coarse-grid correction:

rc = restrict (b — Axv) # restrict the residual
ec = solve(Ac,rc) # coarse-grid solve
v = v + prolong(ec) # add back as correction

@ this is a kind of simple iteration: V< V+ P(A°)"TR(b — Av)
@ define the coarse-grid correction matrix:

B° = P(A°)'R

@ s0 twogrid () mixes two flavors of simple iteration:

Ve v+ MT(b—Av) the smoother
vV« VvV + B°b — Av) the coarse-grid correction
@ QisB°~ A 1? A: yes, but only for smooth inputs
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2-grid method: the effect on error

@ look at twogrid () again:

def twogrid(v,pre=2,post=2):
for k in range (pre):

v = smooth (A,b,v)
rc = restrict (b - Axv)
ec = solve(Ac, rc)

v = v + prolong(ec)

for k in range (post) :
v = smooth (A,b,v)
return v

@ a fairly-quick calculation shows that twogrid () applies a linear
operator, which is close to the zero operator,toe =u — v:

e « (I — M~TA)Post (I — BCA)(I — M1 A)P=ce
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2-grid method: the effect on error

@ look at twogrid () again:

def twogrid(v,pre=2,post=2):
for k in range (pre):

v = smooth (A,b,v)
rc = restrict (b - Axv)
ec = solve(Ac, rc)

v = v + prolong(ec)

for k in range (post) :
v = smooth (A,b,v)
return v

@ a fairly-quick calculation shows that twogrid () applies a linear
operator, which is close to the zero operator,toe =u — v:

e « (I — M~TA)Post (I — BCA)(I — M1 A)P=ce

@ Q: how should we solve the coarse-grid problem A°e¢ = r°¢?
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hierarchy of grids

@ A:if we can have two levels of grids, we can have many!

@ when faced with a coarse-grid solve, just do another 2-grid ... and keep
going down to some really easy and cheap coarse grid

0e) 9IS Q) QO

@ restrictions R and prolongations P are needed in this grid hierarchy
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recursive V-cycle

def vcycle(b,v,lev,pre=2,post=2):
A,_ = discretize(lev)
if lev == 0:
return solve (A, Db) # the buck stops here
for k in range (pre):
v smooth (A, b, v)
rc = restrict (b - Axv)
ec = vcycle(r,0,lev-1) # descend a grid level
v = v + prolong(ec)
for k in range (post):
v smooth (A, b, v)
return v

Q) Q@ Q) QO
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how well does it work?

@ so, how well does it work on our Poisson problem
~V2u=f?

w=0 V= u=0

@ absurdly welll
@ here is scaling out to m = 4097, when N = 1.6 x 107

o 2o p2l
,,,,,,, 2D: O(Nl.OOO) ’.f‘ﬁ
101 4 O 3D G’
---- 3D: O(N1003) -

10° 4

flops

104 10° 10° 107
N = degrees of freedom
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how well does it work?

@ so, how well does it work on our Poisson problem ,
—Veu=f? =l

@ absurdly welll Bkl A R
@ here is scaling out to m = 4097, when N = 1.6 x 107

[
=)

6

O 2D
O 3D
51 O 0
O O
=4 O
,E O
ER o o =
(]
g 8
=2
1
0
10* 10° 106 107
N = degrees of freedom
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on multigrid costs: single V-cycle

@ let us analyze the work (flops) of applying a single V-cycle
o note: multiple V-cycles are generally needed to solve the problem

Definitions
|Q®)| = (number of grid points (unknowns) on grid Q%))

ket smoother work done on grid Q(), plus cost of
k= \ restriction/prolongation to/from next-coarser grid Q-1

Wop = (solver work done on the coarsest level)

@ K = 3 case:

Q) 0® (o1 Q)
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on multigrid costs: single V-cycle
@ total cost of a single V-cycle:
W=WT+ W2+ + WP+ W
@ for 2D grids, each coarse grid is 4 times smaller:
QU] ~ {1
@ since smoothers and restriction/prolongation are O(1) per grid point:
Wi < ¢l

o for some C independent of k
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on multigrid costs: single V-cycle

@ total cost of a single V-cycle:
W K—1 K—2
W:WK +WK71++W10+W0
@ for 2D grids, each coarse grid is 4 times smaller:
QY] ~ Fjat)]
@ since smoothers and restriction/prolongation are O(1) per grid point:
Wi < ¢l
o for some C independent of k
@ since N = |Q(K)] is the number of points in the finest grid,

W < cla®)| + || + -+ M| + W
~ CN (1 +1+.~+4K1—,1)+W0

~ CNi=(7a = 5CN optimal

1/
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multigrid variations

@ there are many variations on linear multigrid:

choose different smoothers (® is pre-smoother, © is post-smoother)
choose different values for pre and post smoother iterations
choose different coarse-grid solvers (O)

repeat the coarse-grid correction a couple of times (W cycles)

o
0@
Q@)
QO

Ed Bueler Multigrid Spring 2023 26/37

[e]

O O O



summary so far

@ multigrid combines three conceptual threads:
@ a few classical iterations, such as Jacobi and GS, are cheap smoothers of
the residual and the error
@ a coarse-grid correction does a good job of updating the fine-grid solution
when acting on a smooth residual
@ the coarse-grid correction is cheap because restriction and prolongation
are cheap

@ but the Poisson problem is too easy!
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minimal surfaces, a nonlinear problem

@ recall ...

tent catenoid

minimal surface problem
for given boundary function (wire frame) g(x, y), find u(x, y) so that

Vu
V- |———|=00nQ, u, =
( 1+|VU|2> o0 =9
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discretization gets you ... more general equations

@ at each point (x;, y;) on the target (finest) grid QK) we discretize to get an
FD approximation of the PDE:

fi(Ui-1,j; Uit1,j, Uij—1, Uiji1, Uij) =0

o roughly-speaking, anyway ... see details next slide
o unknowns must be globally-ordered into a vector u € RV:

Ue = Ui

where ¢ = {(i,]) is a global-to-local indexing function

nonlinear discretization principle
enforcing the PDE at grid point (x;, y;) gives one scalar equation f;(u) = 0

@ also globally-order the equations (functions), f,(u) = f;(u), to get a
nonlinear system of N scalar equations in N scalar unknowns:

F(u)=0
@ Fis a sparse function, as each f;, depends on only O(1) entries of u
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details: 9-point stencil with staggered diffusivity

@ how do you discretize V - (

@ technique: generalize first!
@ discretize V - (D(w)Vu) where

Vu

V1+1|Vul?

D(w)=(1+w)"/2

w = |Vuf?

@ centered FD, using staggered values of D(w),

):»

j+1

Jj—1

gets O(hZ + h?) truncation error and symmetry:

V- (D(w)Vu) ~

D(wy)

D(w,,)

D(w,)
D(ws)

i—1

D(we)(Uit1,j — Uij) — D(ww)(Uij — Ui-1 )

—+

D(wn)(Uij+1 — uij) — D(ws)(uij — Uij—1)

2
2 Uiy1,j — Ui,
=] = (5
I+3.] X

Ed Bueler
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9-point stencil Jacobian: sparsity

@ on a 6 x 6 grid, the Jacobian J(v) has this sparsity pattern:

‘k
9,

d’d"a!"
sl’,d’al"

.‘k
,
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Newton’s method

@ Q: how do we solve our nonlinear system F(u) = 0?
A: Newton’s method!:
J(uP)s = —F(u”)
Pt =uP +s

where J(V) is the Jacobian
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Newton’s method with finite-differenced Jacobian

@ Q: how do we solve our nonlinear system F(u) = 0?
A: Newton’s method!:
J(uP)s = —F(u”)
Pt =uP +s

where J(V) is the Jacobian

o[22

@ Q: how do you calculate the Jacobian? (cause it's a pain in the . ..)
A: more finite differencing:

J(V)rs ~ fr(v+elg) — f(v)

€

A’: symbolically?
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Newton’s method with finite-differenced Jacobian

@ Q: how do we solve our nonlinear system F(u) = 0?
A: Newton’s method!:

J(uP)s = —F(uP)
vt =uP +s

where J(v) is the Jacobian

o280

@ Q: how do you calculate the Jacobian? (cause it's a pain in the .. .)
A: more finite differencing:

(V4 els) — (V)

€

J(V)rs
A’: symbolically?

@ Q: how do you efficiently calculate the FD Jacobian? A: graph coloring
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Newton-multigrid

@ Q: how do you solve each linear system in the Newton iteration?
A: solve J(uP)s = —F(uP) using multigrid:

def newtonmultigrid(v,lev,maxnewts=50,cycles=1):
for p in range (maxnewts) :

= —-F(v)

0

for _ in range(cycles):

= vcycle (b, s, lev)

v + s

]

return v
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Newton-multigrid

@ Q: how do you solve each linear system in the Newton iteration?
A: solve J(uP)s = —F(uP) using multigrid:

def newtonmultigrid(v,lev,maxnewts=50,cycles=1):
for p in range (maxnewts) :
b = -F(v)
s =0
for _ in range(cycles):
= vcycle (b, s, lev)
v =V + s
return v

]

@ details:

o inside veycle (), the matrix A= A% on each grid level Q%) is computed
using the Jacobian on that grid level (rediscretization)
o the finest-level iterate u? must be restricted (injected) down to Q*):

Al — J(k)(Rkaup)
o J® is approximated using FD and graph coloring on Q)
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nonlinear multigrid F-cycle solvers

@ but wait, . ..there’s more!

@ Q: how do you find a good initial iterate u® for the Newton iteration?

A: by solving the problem on a coarser grid, and prolonging
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nonlinear multigrid F-cycle solvers

@ but wait, . ..there’s more!

@ Q: how do you find a good initial iterate u® for the Newton iteration?

A: by solving the problem on a coarser grid, and prolonging

@ justification: the domain of Newton convergence is larger on the smaller
(= coarser) version of the PDE
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nonlinear multigrid F-cycle solvers

@ but wait, . ..there’s more!

@ Q: how do you find a good initial iterate u® for the Newton iteration?

A: by solving the problem on a coarser grid, and prolonging

@ justification: the domain of Newton convergence is larger on the smaller
(= coarser) version of the PDE

@ this strategy is called nested iteration or grid sequencing

@ if you also solve at each level with Newton-multigrid, then this is a
nonlinear multigrid F-cycle ...the most powerful solver you've seen!
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minimal surface PDE problem: results

100

#- H=0.1 (tent) pAY
Y- H=1
Y¢ H=10
©- c=1.1 (catenoid)
O c=1.01 *
©  ¢=1.0001
w
w
bl ¥
w
O
® @ 6 8 9
e s

10°

N = degrees of freedom
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minimal surface PDE problem: results

1 % H=0.1 (tent) pAY
Y- H=1
Y¢ H=10
O c=1.1 (catenoid)
O c=1.01 *
©  ¢=1.0001
=2 }
g 10 ¥
o
o
= w
bl ¥
w
O
® ® 6 %
wle | o — @—=p Q
104 10° 109

N = degrees of freedom

@ run-time demo:
$ cd pdpdes/c/ch7/
S make minimal
$ mpiexec -n 6 ./minimal -snes_fd_color —-pc_type mg \
—{snes, ksp}_converged_reason -snes_grid_sequence 10

~snes_monitor_solution draw -mg_levels_{snes,ksp}_converged_reason
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summary

@ a multigrid V-cycle combines three conceptual threads to build an optimal
solver for linear elliptic PDEs:

@ classical iterations = cheap smoothers
@ coarse-grid correction effective, if starting from a smooth residual
© restriction and prolongation are cheap

@ there is also algebraic multigrid, but that is a different talk . ..
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summary

@ a multigrid V-cycle combines three conceptual threads to build an optimal
solver for linear elliptic PDEs:

@ classical iterations = cheap smoothers
@ coarse-grid correction effective, if starting from a smooth residual
© restriction and prolongation are cheap

@ there is also algebraic multigrid, but that is a different talk . ..

@ for nonlinear elliptic PDEs:

@ wrap a Newton iteration around multigrid V-cycles: Newton-multigrid
@ grid sequencing generates a high-quality finest-grid initial iterate
@ thus: a nonlinear multigrid F-cycle solver

@ Newton-multigrid is not the only nonlinear option .. .there is also full
approximation scheme multigrid, but that is a different talk . ..
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