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a linear PDE problem

I will consider only two PDEs today
1. Poisson problem
2. minimal surface problem

elliptic boundary-value problems
recall Laplacian

∇2u = ∇ · (∇u)

◦ in 2D: ∇2u = uxx + uyy

◦ ∇2 is a negative-definite operator

1. Poisson problem
for a given source function f (x , y), find u(x , y) so that

−∇2u = f on Ω, u
∣∣
∂Ω

= 0
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a nonlinear PDE problem

the second problem is nonlinear, but still elliptic
claim 1. the area of surface z = v(x , y) over Ω is

I[v ] =
∫
Ω

√
1 + |∇v |2 dx dy

claim 2. for given g, continuous along ∂Ω,

u = min
{v : v |∂Ω=g}

I[v ]

solves the boundary value problem below

2. minimal surface problem
for given boundary function (wire frame) g(x , y), find u(x , y) so that

−∇ ·

(
∇u√

1 + |∇u|2

)
= 0 on Ω, u

∣∣
∂Ω

= g
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finite difference discretization

PDEs are infinite-dimensional problems, but
discretization yields finite systems of equations
for example, finite differences (FD):

f ′′(x) =
f (x + h)− 2f (x) + f (x − h)

h2 + O(h2)

assume: Ω = (0,1)× (0,1)
grid spacings: hx = 1

mx−1 , hy = 1
my−1

grid points: (xi , yj) = (ihx , jhy ) for
i = 0, . . . ,mx − 1 and j = 0, . . . ,my − 1
5-point stencil for the Laplacian:

∇2u(xi , yj) ≈
ui−1,j − 2uij + ui+1,j

h2
x

+
ui,j−1 − 2uij + ui,j+1

h2
y

Ed Bueler Multigrid Spring 2023 5 / 37



PDE =⇒ linear system A u = b

FD discretize −∇2u = f :
◦ note we keep the boundary values in the system
◦ N = mx my total unknowns on the grid

mx = 4,my = 3 shown at right

◦ unknowns {uij} are globally ordered: uℓ = uij

get a linear system for u ∈ RN :

A u = b

◦ A ∈ RN×N is sparse
◦ A has positive diagonal
◦ A is symmetric positive definite
◦ A has O(1) nonzeros per row ← at most 5, actually
◦ b ∈ RN has entries bℓ = f (xi , yj)

for mx = my = 5: 9 non-trivial eqns (middle right)
for mx = my = 8: 36 non-trivial eqns (lower right)
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goal: solve A u = b in O(N) work

the linear system A u = b can be set-up using 6N memory locations
◦ A has 5 nonzero entries per row, plus one entry of b

can we solve A u = b in O(N) work and time as N →∞?
◦ if so, the solver is optimal

A is banded, with bandwidth ≈ min{mx ,my} ≈
√

N
◦ so banded Gaussian elimination will solve in O(N2)

let’s back up and ask:

what operations using our A are obviously O(N)?
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cheap O(N) operations: mat-vec and residual

for A from PDE discretization, we can compute Av in O(N) flops
◦ this is because A has O(1) nonzero entries per row

also the residual is O(N)

Definition
given v ∈ RN , the residual for the linear system A u = b is

r(v) = b− Av

observe that:
A u = b ⇐⇒ r(u) = 0
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are simple iterations cheap O(N) operations?

Definition
for the linear system A u = b and an invertible matrix M ∈ RN×N , simple
iteration is

vk+1 = vk + αM−1 (b− Avk )︸ ︷︷ ︸
= r(vk )

α ∈ R is a tuning parameter, with default α = 1
if M = A and α = 1 then vk+1 = u, so one iteration solves it!

◦ . . . not practical, and usually not O(N)

Richardson iteration vk+1 = vk + α r(vk ) is the M = I case
◦ observation: Richardson iteration for the Poisson equation is gradient

descent for the quadratic functional I[v ] = α

∫
Ω

1
2
|∇v |2 − fv

◦ each Richardson iteration is clearly O(N) work

a simple iteration is O(N) . . . if M is the right kind of matrix!
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preconditioned linear systems

Definition
if a matrix or linear map M ∈ RN×N is invertible, we say

M−1Au = M−1b

is a (left-) preconditioned system for A u = b

the preconditioned system has the same solutions as before
the new residual is r̃(v) = M−1b−M−1Av
observation: Richardson iteration on the new system is equivalent to
simple iteration

vk+1 = vk + α r̃(v) ⇐⇒ vk+1 = vk + αM−1 (b− Avk )
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fast preconditioners?

Definition
a matrix or linear map M is a fast preconditioner if solving M z = c requires
O(N) work

example: if A has nonzero diagonal entries, the diagonal M = D is a fast
preconditioner
do not actually form the matrix M−1 when solving M z = c
warning: a preconditioner M can be fast without being a useful tool!
preconditioning is an apparently simple idea, but in the 21st century it is
used all over the space of solvers
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O(N) simple iterations: Jacobi and Gauss-Seidel

suppose we split A into diagonal and triangular parts:

A = D + L + U

the linear system can be rearranged using the splitting:

A u = b ⇐⇒ Du = b− (L + U)u

⇐⇒ u = u + D−1(b− Au)

solving Dz = c is O(N)

Definition
a Jacobi iteration applies a fast preconditioner:

vk+1 = vk + D−1(b− Avk )
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O(N) simple iterations: Jacobi and Gauss-Seidel

suppose we split A into diagonal and triangular parts:

A = D + L + U

the linear system can be rearranged using the splitting:

A u = b ⇐⇒ (D + L)u = b− Uu

⇐⇒ u = u + (D + L)−1(b− Au)

solving (D + L)z = c is O(N) (for our A)

Definition
a Gauss-Seidel (GS) iteration applies a fast preconditioner:

vk+1 = vk + (D + L)−1(b− Avk )
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example of Gauss-Seidel iteration

the matrix-splitting view obscures the simplicity of Gauss-Seidel?
example: consider the linear system Au = b with

A =



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2


, b =


b1
b2
b3
...

bN


◦ in this case, Gauss-Seidel iteration computes

v [k+1]
j =

bj

2
+

1
2

(
v [k+1]

j−1 + v [k ]
j+1

)
◦ this is a relaxation method . . . update vj using average of neighbors
◦ one can prove this method converges
◦ this example is relevant because A ∼ −∇2 in 1D
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Jacobi and Gauss-Seidel iterations as solvers

for the Poisson problem linear
system Au = b, one can prove
that Gauss-Seidel and Jacobi
converge
but, after initial progress, residual
norm decrease is agonizingly
slowly on fine grids
these simple iterations stagnate
an iteration vk+1 = ϕ(vk )
stagnates or stalls if the ratio of
successive residual norms
{∥r(vk+1)∥/∥r(vk )∥} goes to one

Achi Brandt, an inventor of multigrid:
Stalling numerical processes must be wrong.
Whenever the computer grinds very hard for
small or slow effect, there must be a better
way to achieve the same goal.
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Jacobi and Gauss-Seidel iterations as smoothers

observation:
functions become
much smoother
after a few
iterations
the first multigrid
paper (Federenko,
1961) observed
this?

Jacobi α = 2
3 Jacobi Gauss-Seidel
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grid transfers

multiple grid resolutions will allow us to exploit smoothers to generate fast
solutions, but we need grid transfer operators between the different grids

restrict−→
prolong←−

for a function v defined on a finer grid, define its restriction Rv to a
coarser grid to be its value on the coarse grid points (injection), or restrict
by averaging onto the coarser grid (full weighting)
for a function w defined on the coarser grid, define its prolongation Pw to
a finer grid by (linear) interpolation
R, P are linear operators

◦ R, P are rectangular (non-square) matrices
◦ RP = I, or approximately so
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2-grid method

put these ideas together!
the 2-grid method approximately solves the PDE on the finer grid:

def twogrid(v,pre=2,post=2):
for k in range(pre):

v = smooth(A,b,v)
rc = restrict(b - A*v)
ec = solve(Ac,rc) # solve error equation
v = v + prolong(ec)
for k in range(post):

v = smooth(A,b,v)
return v

where
A,b = discretize(m,m) # fine grid
Ac,_ = discretize(m/2,m/2) # coarse grid

smooth() does one Jacobi or GS iteration
solve() might be Gaussian elimination, etc., for Acec = rc
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the error equation

what do I mean by the error equation?
for the linear system A u = b, consider some v which is not a solution

Definition
for any vector v, the error equation corresponding to the linear system A u = b
is the equation

A e = r(v)

here’s the logic:

e = u− v definition of the error
A e = Au− Av multiply by A
A e = b− Av = r(v) error equation
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the coarse grid correction

the essential 3 lines in twogrid() form a coarse-grid correction:

rc = restrict(b - A*v) # restrict the residual
ec = solve(Ac,rc) # coarse-grid solve
v = v + prolong(ec) # add back as correction

this is a kind of simple iteration: v← v + P(Ac)−1R(b− Av)
define the coarse-grid correction matrix:

Bc = P(Ac)−1R

so twogrid() mixes two flavors of simple iteration:

v← v + M−1(b− Av) the smoother
v← v + Bc(b− Av) the coarse-grid correction

Q: is Bc ≈ A−1?
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v← v + Bc(b− Av) the coarse-grid correction

Q: is Bc ≈ A−1? A: yes, but only for smooth inputs

Ed Bueler Multigrid Spring 2023 19 / 37



2-grid method: the effect on error

look at twogrid() again:

def twogrid(v,pre=2,post=2):
for k in range(pre):

v = smooth(A,b,v)
rc = restrict(b - A*v)
ec = solve(Ac,rc)
v = v + prolong(ec)
for k in range(post):

v = smooth(A,b,v)
return v

a fairly-quick calculation shows that twogrid() applies a linear
operator, which is close to the zero operator, to e = u− v:

e← (I −M−1A)post(I − BcA)(I −M−1A)pree

Q: how should we solve the coarse-grid problem Acec = rc?
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hierarchy of grids

A: if we can have two levels of grids, we can have many!
when faced with a coarse-grid solve, just do another 2-grid . . . and keep
going down to some really easy and cheap coarse grid

restrictions R and prolongations P are needed in this grid hierarchy
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recursive V-cycle

def vcycle(b,v,lev,pre=2,post=2):
A,_ = discretize(lev)
if lev == 0:

return solve(A,b) # the buck stops here
for k in range(pre):

v = smooth(A,b,v)
rc = restrict(b - A*v)
ec = vcycle(r,0,lev-1) # descend a grid level
v = v + prolong(ec)
for k in range(post):

v = smooth(A,b,v)
return v
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how well does it work?

so, how well does it work on our Poisson problem
−∇2u = f?

absurdly well!
here is scaling out to m = 4097, when N = 1.6× 107
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on multigrid costs: single V-cycle

let us analyze the work (flops) of applying a single V-cycle
◦ note: multiple V-cycles are generally needed to solve the problem

Definitions

|Ω(k)| = (number of grid points (unknowns) on grid Ω(k))

W k−1
k =

(
smoother work done on grid Ω(k), plus cost of

restriction/prolongation to/from next-coarser grid Ω(k−1)

)
W0 = (solver work done on the coarsest level)

K = 3 case:

Ed Bueler Multigrid Spring 2023 24 / 37



on multigrid costs: single V-cycle

total cost of a single V-cycle:

W = W K−1
K + W K−2

K−1 + · · ·+ W 0
1 + W0

for 2D grids, each coarse grid is 4 times smaller:

|Ω(k−1)| ≈ 1
4 |Ω

(k)|

since smoothers and restriction/prolongation are O(1) per grid point:

W k−1
k ≤ C|Ω(k)|

◦ for some C independent of k

since N = |Ω(K )| is the number of points in the finest grid,

W ≤ C|Ω(K )|+ C|Ω(K−1)|+ · · ·+ C|Ω(1)|+ W0

≈ CN
(
1 + 1

4 + · · ·+ 1
4K−1

)
+ W0

≈ CN 1
1−(1/4) =

4
3 CN optimal
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multigrid variations

there are many variations on linear multigrid:
◦ choose different smoothers (• is pre-smoother, ◦ is post-smoother)
◦ choose different values for pre and post smoother iterations
◦ choose different coarse-grid solvers (□)
◦ repeat the coarse-grid correction a couple of times (W cycles)
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summary so far

multigrid combines three conceptual threads:
1 a few classical iterations, such as Jacobi and GS, are cheap smoothers of

the residual and the error
2 a coarse-grid correction does a good job of updating the fine-grid solution

when acting on a smooth residual
3 the coarse-grid correction is cheap because restriction and prolongation

are cheap

but the Poisson problem is too easy!
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minimal surfaces, a nonlinear problem

recall . . .

tent catenoid

minimal surface problem
for given boundary function (wire frame) g(x , y), find u(x , y) so that

−∇ ·

(
∇u√

1 + |∇u|2

)
= 0 on Ω, u

∣∣
∂Ω

= g
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discretization gets you . . . more general equations

at each point (xi , yj) on the target (finest) grid Ω(K ) we discretize to get an
FD approximation of the PDE:

fij(ui−1,j , ui+1,j , ui,j−1, ui,j+1, ui,j) = 0

◦ roughly-speaking, anyway ... see details next slide
◦ unknowns must be globally-ordered into a vector u ∈ RN :

uℓ = ui,j

where ℓ = ℓ(i, j) is a global-to-local indexing function

nonlinear discretization principle
enforcing the PDE at grid point (xi , yj) gives one scalar equation fij(u) = 0

also globally-order the equations (functions), fℓ(u) = fij(u), to get a
nonlinear system of N scalar equations in N scalar unknowns:

F(u) = 0

F is a sparse function, as each fℓ depends on only O(1) entries of u
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details: 9-point stencil with staggered diffusivity

how do you discretize ∇ ·

(
∇u√

1 + |∇u|2

)
?

technique: generalize first!
discretize ∇ · (D(w)∇u) where

D(w) = (1 + w)−1/2

w = |∇u|2

centered FD, using staggered values of D(w),
gets O(h2

x + h2
y ) truncation error and symmetry:

∇ · (D(w)∇u) ≈ D(we)(ui+1,j − ui,j)− D(ww )(ui,j − ui−1,j)

h2
x

+
D(wn)(ui,j+1 − ui,j)− D(ws)(ui,j − ui,j−1)

h2
y

we =
[
|∇u|2

]
i+ 1

2 ,j
≈

(
ui+1,j − ui,j

hx

)2

+

(
ui,j+1 + ui+1,j+1 − ui,j − ui+1,j

4hy

)2
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9-point stencil Jacobian: sparsity

on a 6× 6 grid, the Jacobian J(v) has this sparsity pattern:
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Newton’s method

Q: how do we solve our nonlinear system F(u) = 0?
A: Newton’s method!:

J(up)s = −F(up)

up+1 = up + s

where J(v) is the Jacobian

J(v)r ,s =

[
∂fr (v)
∂vs

]
Q: how do you calculate the Jacobian? (cause it’s a pain in the . . . )
A: more finite differencing:

J(v)r ,s ≈
fr (v + ϵ1s)− fr (v)

ϵ

A′: symbolically?
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Newton’s method with finite-differenced Jacobian
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Newton’s method with finite-differenced Jacobian

Q: how do we solve our nonlinear system F(u) = 0?
A: Newton’s method!:

J(up)s = −F(up)

up+1 = up + s

where J(v) is the Jacobian

J(v)r ,s =

[
∂fr (v)
∂vs

]
Q: how do you calculate the Jacobian? (cause it’s a pain in the . . . )
A: more finite differencing:

J(v)r ,s ≈
fr (v + ϵ1s)− fr (v)

ϵ

A′: symbolically?

Q: how do you efficiently calculate the FD Jacobian? A: graph coloring
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Newton-multigrid

Q: how do you solve each linear system in the Newton iteration?

A: solve J(up)s = −F(up) using multigrid:

def newtonmultigrid(v,lev,maxnewts=50,cycles=1):
for p in range(maxnewts):

b = -F(v)
s = 0
for _ in range(cycles):

s = vcycle(b,s,lev)
v = v + s

return v

details:
◦ inside vcycle(), the matrix A = A(k) on each grid level Ω(k) is computed

using the Jacobian on that grid level (rediscretization)
◦ the finest-level iterate up must be restricted (injected) down to Ω(k):

A(k) = J(k)(RK−k up)

◦ J(k) is approximated using FD and graph coloring on Ω(k)
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nonlinear multigrid F-cycle solvers

but wait, . . . there’s more!

Q: how do you find a good initial iterate u0 for the Newton iteration?

A: by solving the problem on a coarser grid, and prolonging

justification: the domain of Newton convergence is larger on the smaller
(= coarser) version of the PDE

this strategy is called nested iteration or grid sequencing
if you also solve at each level with Newton-multigrid, then this is a
nonlinear multigrid F-cycle . . . the most powerful solver you’ve seen!
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minimal surface PDE problem: results

run-time demo:
$ cd p4pdes/c/ch7/
$ make minimal
$ mpiexec -n 6 ./minimal -snes_fd_color -pc_type mg \

-{snes,ksp}_converged_reason -snes_grid_sequence 10

-snes_monitor_solution draw -mg_levels_{snes,ksp}_converged_reason

Ed Bueler Multigrid Spring 2023 35 / 37



minimal surface PDE problem: results

run-time demo:
$ cd p4pdes/c/ch7/
$ make minimal
$ mpiexec -n 6 ./minimal -snes_fd_color -pc_type mg \

-{snes,ksp}_converged_reason -snes_grid_sequence 10

-snes_monitor_solution draw -mg_levels_{snes,ksp}_converged_reason

Ed Bueler Multigrid Spring 2023 35 / 37



summary

a multigrid V-cycle combines three conceptual threads to build an optimal
solver for linear elliptic PDEs:

1 classical iterations = cheap smoothers
2 coarse-grid correction effective, if starting from a smooth residual
3 restriction and prolongation are cheap

there is also algebraic multigrid, but that is a different talk . . .

for nonlinear elliptic PDEs:
1 wrap a Newton iteration around multigrid V-cycles: Newton-multigrid
2 grid sequencing generates a high-quality finest-grid initial iterate
3 thus: a nonlinear multigrid F-cycle solver

Newton-multigrid is not the only nonlinear option . . . there is also full
approximation scheme multigrid, but that is a different talk . . .
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