Multigrid

optimal solvers for linear and nonlinear elliptic PDEs

Ed Bueler
UAF Math 692 Scalable Seminar

Spring 2023

Outline

(1) examples: two elliptic PDE problems
(2) simple iterations?
(3) 2-grid method, and the coarse-grid correction
(4) V-cycle multigrid
(5) nonlinear multigrid

a linear PDE problem

- I will consider only two PDEs today

1. Poisson problem
2. minimal surface problem

- elliptic boundary-value problems
- recall Laplacian

$$
\nabla^{2} u=\nabla \cdot(\nabla u)
$$

- in 2D: $\quad \nabla^{2} u=u_{x x}+u_{y y}$
- ∇^{2} is a negative-definite operator

1. Poisson problem

for a given source function $f(x, y)$, find $u(x, y)$ so that

$$
-\nabla^{2} u=f \text { on } \Omega,\left.\quad u\right|_{\partial \Omega}=0
$$

a nonlinear PDE problem

- the second problem is nonlinear, but still elliptic
- claim 1. the area of surface $z=v(x, y)$ over Ω is

$$
I[v]=\int_{\Omega} \sqrt{1+|\nabla v|^{2}} d x d y
$$

- claim 2. for given g, continuous along $\partial \Omega$,

$$
u=\min _{\left\{v:\left.v\right|_{\partial \Omega}=g\right\}} I[v]
$$

solves the boundary value problem below

2. minimal surface problem

for given boundary function (wire frame) $g(x, y)$, find $u(x, y)$ so that

$$
-\nabla \cdot\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0 \text { on } \Omega,\left.\quad u\right|_{\partial \Omega}=g
$$

finite difference discretization

- PDEs are infinite-dimensional problems, but discretization yields finite systems of equations
- for example, finite differences (FD):

$$
f^{\prime \prime}(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}+O\left(h^{2}\right)
$$

- assume: $\Omega=(0,1) \times(0,1)$
- grid spacings: $h_{x}=\frac{1}{m_{x}-1}, h_{y}=\frac{1}{m_{y}-1}$
- grid points: $\left(x_{i}, y_{j}\right)=\left(i h_{x}, j h_{y}\right)$ for
$i=0, \ldots, m_{x}-1$ and $j=0, \ldots, m_{y}-1$
- 5-point stencil for the Laplacian:

$$
\nabla^{2} u\left(x_{i}, y_{j}\right) \approx \frac{u_{i-1, j}-2 u_{i j}+u_{i+1, j}}{h_{x}^{2}}+\frac{u_{i, j-1}-2 u_{i j}+u_{i, j+1}}{h_{y}^{2}}
$$

$\mathrm{PDE} \Longrightarrow$ linear system $A \mathbf{u}=\mathbf{b}$

- FD discretize $-\nabla^{2} u=f$:
- note we keep the boundary values in the system
- $N=m_{x} m_{y}$ total unknowns on the grid
- $m_{x}=4, m_{y}=3$ shown at right
- unknowns $\left\{u_{i j}\right\}$ are globally ordered: $u_{\ell}=u_{i j}$
- get a linear system for $\mathbf{u} \in \mathbb{R}^{N}$:

$$
A \mathbf{u}=\mathbf{b}
$$

- $A \in \mathbb{R}^{N \times N}$ is sparse
- A has positive diagonal
- A is symmetric positive definite
- A has $O(1)$ nonzeros per row \leftarrow at most 5 , actually
- $\mathbf{b} \in \mathbb{R}^{N}$ has entries $b_{\ell}=f\left(x_{i}, y_{j}\right)$
- for $m_{x}=m_{y}=5$: 9 non-trivial eqns (middle right)
- for $m_{x}=m_{y}=8$: 36 non-trivial eqns (lower right)

goal: solve $A \mathbf{u}=\mathbf{b}$ in $O(N)$ work

- the linear system $A \mathbf{u}=\mathbf{b}$ can be set-up using 6 N memory locations
- A has 5 nonzero entries per row, plus one entry of \mathbf{b}
- can we solve $A \mathbf{u}=\mathbf{b}$ in $O(N)$ work and time as $N \rightarrow \infty$?
- if so, the solver is optimal
- A is banded, with bandwidth $\approx \min \left\{m_{x}, m_{y}\right\} \approx \sqrt{N}$ so banded Gaussian elimination will solve in $O\left(N^{2}\right)$
- let's back up and ask: what onerations using our A are obviously $O(N)$?

goal: solve $A \mathbf{u}=\mathbf{b}$ in $O(N)$ work

- the linear system $A \mathbf{u}=\mathbf{b}$ can be set-up using 6 N memory locations
- A has 5 nonzero entries per row, plus one entry of \mathbf{b}
- can we solve $A \mathbf{u}=\mathbf{b}$ in $O(N)$ work and time as $N \rightarrow \infty$?
- if so, the solver is optimal
- A is banded, with bandwidth $\approx \min \left\{m_{x}, m_{y}\right\} \approx \sqrt{N}$
- so banded Gaussian elimination will solve in $O\left(N^{2}\right)$
- let's back up and ask:
what onerations using our A are obviously $O(N)$?

goal: solve $A \mathbf{u}=\mathbf{b}$ in $O(N)$ work

- the linear system $A \mathbf{u}=\mathbf{b}$ can be set-up using $6 N$ memory locations
- A has 5 nonzero entries per row, plus one entry of \mathbf{b}
- can we solve $A \mathbf{u}=\mathbf{b}$ in $O(N)$ work and time as $N \rightarrow \infty$?
- if so, the solver is optimal
- A is banded, with bandwidth $\approx \min \left\{m_{x}, m_{y}\right\} \approx \sqrt{N}$
- so banded Gaussian elimination will solve in $O\left(N^{2}\right)$
- let's back up and ask:
what operations using our A are obviously $O(N)$?

cheap $O(N)$ operations: mat-vec and residual

- for A from PDE discretization, we can compute $A \mathbf{v}$ in $O(N)$ flops
- this is because A has $O(1)$ nonzero entries per row
- also the residual is $O(N)$

Definition

given $\mathbf{v} \in \mathbb{R}^{N}$, the residual for the linear system $A \mathbf{u}=\mathbf{b}$ is

$$
\mathbf{r}(\mathbf{v})=\mathbf{b}-A \mathbf{v}
$$

observe that:

$$
A \mathbf{u}=\mathbf{b} \quad \Longleftrightarrow \quad \mathbf{r}(\mathbf{u})=0
$$

are simple iterations cheap $O(N)$ operations?

Definition

for the linear system $A \mathbf{u}=\mathbf{b}$ and an invertible matrix $M \in \mathbb{R}^{N \times N}$, simple iteration is

$$
\mathbf{v}_{k+1}=\mathbf{v}_{k}+\alpha M^{-1} \underbrace{\left(\mathbf{b}-A \mathbf{v}_{k}\right)}_{=\mathbf{r}\left(\mathbf{v}_{k}\right)}
$$

- $\alpha \in \mathbb{R}$ is a tuning parameter, with default $\alpha=1$
- if $M=\boldsymbol{A}$ and $\alpha=1$ then $\mathbf{v}_{k+1}=\mathbf{u}$, so one iteration solves it!
- ... not practical, and usually not $O(N)$
- Richardson iteration $\mathbf{v}_{k+1}=\mathbf{v}_{k}+\alpha \mathbf{r}\left(\mathbf{v}_{k}\right)$ is the $M=I$ case
- observation: Richardson iteration for the Poisson equation is gradient descent for the quadratic functional $\quad I[v]=\alpha \int_{\Omega} \frac{1}{2}|\nabla v|^{2}-f v$
- each Richardson iteration is clearly $O(N)$ work
- a simple iteration is $O(N) \ldots$ if M is the right kind of matrix!

preconditioned linear systems

Definition

if a matrix or linear map $M \in \mathbb{R}^{N \times N}$ is invertible, we say

$$
M^{-1} A \mathbf{u}=M^{-1} \mathbf{b}
$$

is a (left-) preconditioned system for $\mathbf{A u}=\mathbf{b}$

- the preconditioned system has the same solutions as before
- the new residual is $\tilde{\mathbf{r}}(\mathbf{v})=M^{-1} \mathbf{b}-M^{-1} A \mathbf{v}$
- observation: Richardson iteration on the new system is equivalent to simple iteration

$$
\mathbf{v}_{k+1}=\mathbf{v}_{k}+\alpha \tilde{\mathbf{r}}(\mathbf{v}) \quad \Longleftrightarrow \quad \mathbf{v}_{k+1}=\mathbf{v}_{k}+\alpha M^{-1}\left(\mathbf{b}-A \mathbf{v}_{k}\right)
$$

fast preconditioners?

Definition

a matrix or linear map M is a fast preconditioner if solving $M \mathbf{z}=\mathbf{c}$ requires $O(N)$ work

- example: if A has nonzero diagonal entries, the diagonal $M=D$ is a fast preconditioner
- do not actually form the matrix M^{-1} when solving $M \mathbf{z}=\mathbf{c}$
- warning: a preconditioner M can be fast without being a useful tool!
- preconditioning is an apparently simple idea, but in the 21st century it is used all over the space of solvers

$O(N)$ simple iterations: Jacobi and Gauss-Seidel

- suppose we split A into diagonal and triangular parts:

$$
A=D+L+U
$$

- the linear system can be rearranged using the splitting:

$$
\begin{aligned}
A \mathbf{u}=\mathbf{b} & \Longleftrightarrow D \mathbf{u}=\mathbf{b}-(L+U) \mathbf{u} \\
& \Longleftrightarrow \mathbf{u}=\mathbf{u}+D^{-1}(\mathbf{b}-A \mathbf{u})
\end{aligned}
$$

- solving $D \mathbf{z}=\mathbf{c}$ is $O(N)$

Definition

a Jacobi iteration applies a fast preconditioner:

$$
\mathbf{v}_{k+1}=\mathbf{v}_{k}+D^{-1}\left(\mathbf{b}-A \mathbf{v}_{k}\right)
$$

$O(N)$ simple iterations: Jacobi and Gauss-Seidel

- suppose we split A into diagonal and triangular parts:

$$
A=D+L+U
$$

- the linear system can be rearranged using the splitting:

$$
\begin{aligned}
A \mathbf{u}=\mathbf{b} & \Longleftrightarrow(D+L) \mathbf{u}=\mathbf{b}-U \mathbf{u} \\
& \Longleftrightarrow \mathbf{u}=\mathbf{u}+(D+L)^{-1}(\mathbf{b}-A \mathbf{u})
\end{aligned}
$$

- solving $(D+L) \mathbf{z}=\mathbf{c}$ is $O(N)$ (for our A)

Definition

a Gauss-Seidel (GS) iteration applies a fast preconditioner:

$$
\mathbf{v}_{k+1}=\mathbf{v}_{k}+(D+L)^{-1}\left(\mathbf{b}-A \mathbf{v}_{k}\right)
$$

example of Gauss-Seidel iteration

- the matrix-splitting view obscures the simplicity of Gauss-Seidel?
- example: consider the linear system $A \mathbf{u}=\mathbf{b}$ with

$$
A=\left[\begin{array}{cccccc}
2 & -1 & & & & \\
-1 & 2 & -1 & & & \\
& -1 & 2 & -1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 2 & -1 \\
& & & & -1 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{N}
\end{array}\right]
$$

- in this case, Gauss-Seidel iteration computes

$$
v_{j}^{[k+1]}=\frac{b_{j}}{2}+\frac{1}{2}\left(v_{j-1}^{[k+1]}+v_{j+1}^{[k]}\right)
$$

- this is a relaxation method \ldots update v_{j} using average of neighbors
- one can prove this method converges
- this example is relevant because $A \sim-\nabla^{2}$ in 1D

Jacobi and Gauss-Seidel iterations as solvers

- for the Poisson problem linear system $A \mathbf{u}=\mathbf{b}$, one can prove that Gauss-Seidel and Jacobi converge
- but, after initial progress, residual norm decrease is agonizingly slowly on fine grids
- these simple iterations stagnate
- an iteration $\mathbf{v}_{k+1}=\phi\left(\mathbf{v}_{k}\right)$ stagnates or stalls if the ratio of successive residual norms $\left\{\left\|\mathbf{r}\left(\mathbf{v}_{k+1}\right)\right\| /\left\|\mathbf{r}\left(\mathbf{v}_{k}\right)\right\|\right\}$ goes to one

- Achi Brandt, an inventor of multigrid:

> Stalling numerical processes must be wrong. Whenever the computer grinds very hard for small or slow effect, there must be a better
> way to achieve the same goal.

Jacobi and Gauss-Seidel iterations as solvers

- for the Poisson problem linear system $A \mathbf{u}=\mathbf{b}$, one can prove that Gauss-Seidel and Jacobi converge
- but, after initial progress, residual norm decrease is agonizingly slowly on fine grids
- these simple iterations stagnate
- an iteration $\mathbf{v}_{k+1}=\phi\left(\mathbf{v}_{k}\right)$ stagnates or stalls if the ratio of successive residual norms $\left\{\left\|\mathbf{r}\left(\mathbf{v}_{k+1}\right)\right\| /\left\|\mathbf{r}\left(\mathbf{v}_{k}\right)\right\|\right\}$ goes to one

- Achi Brandt, an inventor of multigrid:

Stalling numerical processes must be wrong. Whenever the computer grinds very hard for small or slow effect, there must be a better way to achieve the same goal.

Jacobi and Gauss-Seidel iterations as smoothers

- observation: functions become much smoother after a few iterations
- the first multigrid paper (Federenko, 1961) observed this?

Jacobi

$\alpha=\frac{2}{3}$ Jacobi

Gauss-Seidel

Jacobi and Gauss-Seidel iterations as smoothers

- observation: functions become much smoother after a few iterations
- the first multigrid paper (Federenko, 1961) observed this?

grid transfers

- multiple grid resolutions will allow us to exploit smoothers to generate fast solutions, but we need grid transfer operators between the different grids

- for a function \mathbf{v} defined on a finer grid, define its restriction $R \mathbf{v}$ to a coarser grid to be its value on the coarse grid points (injection), or restrict by averaging onto the coarser grid (full weighting)
- for a function w defined on the coarser grid, define its prolongation Pw to a finer grid by (linear) interpolation
- R, P are linear operators
- R, P are rectangular (non-square) matrices
- $R P=I$, or approximately so

2-grid method

- put these ideas together!
- the 2-grid method approximately solves the PDE on the finer grid:

```
def twogrid(v,pre=2,post=2):
    for k in range(pre):
        v = smooth (A,b,v)
    rc = restrict (b - A*v)
    ec = solve(Ac,rc) # solve error equation
    v = v + prolong(ec)
    for k in range(post):
        v}=\operatorname{smooth}(A,b,v
    return v
```

- where

```
A,b = discretize(m,m)
Ac,_ = discretize(m/2,m/2) # coarse grid
# fine grid
```

- smooth () does one Jacobi or GS iteration
- solve () might be Gaussian elimination, etc., for $A^{c} \mathbf{e}^{c}=\mathbf{r}^{c}$

the error equation

- what do I mean by the error equation?
- for the linear system $A \mathbf{u}=\mathbf{b}$, consider some \mathbf{v} which is not a solution

Definition

for any vector \mathbf{v}, the error equation corresponding to the linear system $\mathbf{A} \mathbf{u}=\mathbf{b}$ is the equation

$$
A \mathbf{e}=\mathbf{r}(\mathbf{v})
$$

- here's the logic:

$$
\begin{aligned}
\mathbf{e} & =\mathbf{u}-\mathbf{v} \\
A \mathbf{e} & =A \mathbf{u}-A \mathbf{v} \\
A \mathbf{e} & =\mathbf{b}-A \mathbf{v}=\mathbf{r}(\mathbf{v})
\end{aligned}
$$

definition of the error multiply by A
error equation

the coarse grid correction

- the essential 3 lines in twogrid() form a coarse-grid correction:

```
rc = restrict (b - A*v)
```

ec $=$ solve(Ac,rc) \# coarse-grid solve
$\mathrm{v}=\mathrm{v}+$ prolong (ec) \# add back as correction

- this is a kind of simple iteration:

$$
\mathbf{v} \leftarrow \mathbf{v}+P\left(A^{c}\right)^{-1} R(\mathbf{b}-A \mathbf{v})
$$

- define the coarse-grid correction matrix:

$$
B^{c}=P\left(A^{c}\right)^{-1} R
$$

- so twogrid () mixes two flavors of simple iteration:

$$
\begin{array}{ll}
\mathbf{v} \leftarrow \mathbf{v}+M^{-1}(\mathbf{b}-A \mathbf{v}) & \text { the smoother } \\
\mathbf{v} \leftarrow \mathbf{v}+B^{c}(\mathbf{b}-A \mathbf{v}) & \text { the coarse-grid correction }
\end{array}
$$

- Q : is $B^{c} \approx A^{-1}$?

the coarse grid correction

- the essential 3 lines in twogrid() form a coarse-grid correction:

```
rc = restrict (b - A*v)
ec = solve(Ac,rc)
v}=\textrm{v}+\mathrm{ prolong(ec)
```

\# restrict the residual
\# coarse-grid solve
\# add back as correction

- this is a kind of simple iteration:

$$
\mathbf{v} \leftarrow \mathbf{v}+P\left(A^{c}\right)^{-1} R(\mathbf{b}-A \mathbf{v})
$$

- define the coarse-grid correction matrix:

$$
B^{c}=P\left(A^{c}\right)^{-1} R
$$

- so twogrid() mixes two flavors of simple iteration:

$$
\begin{array}{ll}
\mathbf{v} \leftarrow \mathbf{v}+M^{-1}(\mathbf{b}-A \mathbf{v}) & \text { the smoother } \\
\mathbf{v} \leftarrow \mathbf{v}+B^{c}(\mathbf{b}-A \mathbf{v}) & \text { the coarse-grid correction }
\end{array}
$$

- Q : is $B^{c} \approx A^{-1}$?

A: yes, but only for smooth inputs

2-grid method: the effect on error

- look at twogrid() again:

```
def twogrid(v,pre=2,post=2):
    for k in range(pre):
        v = smooth(A,b,v)
        rc = restrict(b - A*v)
        ec = solve(Ac,rc)
        v = v + prolong(ec)
        for k in range(post):
        v = smooth (A,b,v)
    return v
```

- a fairly-quick calculation shows that twogrid () applies a linear operator, which is close to the zero operator, to $\mathbf{e}=\mathbf{u}-\mathbf{v}$:

$$
\mathbf{e} \leftarrow\left(I-M^{-1} A\right)^{\mathrm{post}}\left(I-B^{c} A\right)\left(I-M^{-1} A\right)^{\mathrm{pre}} \mathbf{e}
$$

- Q: how should we solve the coarse-grid problem $A^{C} \mathrm{e}^{C}=\mathrm{r}^{C}$?

2-grid method: the effect on error

- look at twogrid() again:

```
def twogrid(v,pre=2,post=2):
    for k in range(pre):
        v = smooth(A,b,v)
        rc = restrict(b - A*v)
        ec = solve(Ac,rc)
        v = v + prolong(ec)
        for k in range(post):
        v = smooth(A,b,v)
    return v
```

- a fairly-quick calculation shows that twogrid () applies a linear operator, which is close to the zero operator, to $\mathbf{e}=\mathbf{u}-\mathbf{v}$:

$$
\mathbf{e} \leftarrow\left(I-M^{-1} A\right)^{\mathrm{post}}\left(I-B^{c} A\right)\left(I-M^{-1} A\right)^{\mathrm{pre}} \mathbf{e}
$$

- Q: how should we solve the coarse-grid problem $A^{C} \mathbf{e}^{C}=\mathbf{r}^{c}$?

hierarchy of grids

- A: if we can have two levels of grids, we can have many!
- when faced with a coarse-grid solve, just do another 2-grid ... and keep going down to some really easy and cheap coarse grid

$\Omega^{(3)}$

$\Omega^{(2)}$

$\Omega^{(1)}$

$\Omega^{(0)}$
- restrictions R and prolongations P are needed in this grid hierarchy

recursive V-cycle

```
def vcycle(b,v,lev,pre=2,post=2):
    A,__ = discretize(lev)
    if lev == 0:
        return solve(A,b) # the buck stops here
    for k in range(pre):
        v = smooth (A,b,v)
    rc = restrict (b - A*v)
    ec = vcycle(r,0,lev-1) # descend a grid level
    v = v + prolong(ec)
    for k in range(post):
        v}=\operatorname{smooth}(A,b,v
    return v
```


$\Omega^{(3)}$

$\Omega^{(2)}$

$\Omega^{(1)}$

$\Omega^{(0)}$

how well does it work?

- so, how well does it work on our Poisson problem $-\nabla^{2} u=f$?
- absurdly well!
- here is scaling out to $m=4097$, when $N=1.6 \times 10^{7}$

how well does it work?

- so, how well does it work on our Poisson problem

$$
-\nabla^{2} u=f ?
$$

- absurdly well!
- here is scaling out to $m=4097$, when $N=1.6 \times 10^{7}$

on multigrid costs: single V-cycle

- let us analyze the work (flops) of applying a single V-cycle
- note: multiple V-cycles are generally needed to solve the problem

Definitions

$$
\begin{aligned}
\left|\Omega^{(k)}\right| & =\left(\text { number of grid points (unknowns) on grid } \Omega^{(k)}\right) \\
W_{k}^{k-1} & =\binom{\text { smoother work done on grid } \Omega^{(k)}, \text { plus cost of }}{\text { restriction/prolongation to/from next-coarser grid } \Omega^{(k-1)}} \\
W_{0} & =(\text { solver work done on the coarsest level) }
\end{aligned}
$$

- $K=3$ case:

$\Omega^{(3)}$

$\Omega^{(2)}$

$\Omega^{(1)}$

$\Omega^{(0)}$

on multigrid costs: single V-cycle

- total cost of a single V-cycle:

$$
\bar{W}=W_{K}^{K-1}+W_{K-1}^{K-2}+\cdots+W_{1}^{0}+W_{0}
$$

- for 2D grids, each coarse grid is 4 times smaller:

$$
\left|\Omega^{(k-1)}\right| \approx \frac{1}{4}\left|\Omega^{(k)}\right|
$$

- since smoothers and restriction/prolongation are $O(1)$ per grid point:

$$
W_{k}^{k-1} \leq C\left|\Omega^{(k)}\right|
$$

- for some C independent of k
- since $N=\left|\Omega^{(K)}\right|$ is the number of points in the finest grid,

on multigrid costs: single V-cycle

- total cost of a single V-cycle:

$$
\bar{W}=W_{K}^{K-1}+W_{K-1}^{K-2}+\cdots+W_{1}^{0}+W_{0}
$$

- for 2D grids, each coarse grid is 4 times smaller:

$$
\left|\Omega^{(k-1)}\right| \approx \frac{1}{4}\left|\Omega^{(k)}\right|
$$

- since smoothers and restriction/prolongation are $O(1)$ per grid point:

$$
W_{k}^{k-1} \leq C\left|\Omega^{(k)}\right|
$$

- for some C independent of k
- since $N=\left|\Omega^{(K)}\right|$ is the number of points in the finest grid,

$$
\begin{aligned}
\bar{W} & \leq C\left|\Omega^{(K)}\right|+C\left|\Omega^{(K-1)}\right|+\cdots+C\left|\Omega^{(1)}\right|+W_{0} \\
& \approx C N\left(1+\frac{1}{4}+\cdots+\frac{1}{4^{K-1}}\right)+W_{0} \\
& \approx C N \frac{1}{1-(1 / 4)}=\frac{4}{3} C N \quad \text { optimal }
\end{aligned}
$$

multigrid variations

- there are many variations on linear multigrid:
- choose different smoothers (\bullet is pre-smoother, o is post-smoother)
- choose different values for pre and post smoother iterations
- choose different coarse-grid solvers (\square)
- repeat the coarse-grid correction a couple of times (W cycles)

$$
\begin{aligned}
& \Omega^{(3)} \\
& \Omega^{(2)} \\
& \Omega^{(1)} \\
& \Omega^{(0)}
\end{aligned}
$$

summary so far

- multigrid combines three conceptual threads:
(1) a few classical iterations, such as Jacobi and GS, are cheap smoothers of the residual and the error
(2) a coarse-grid correction does a good job of updating the fine-grid solution when acting on a smooth residual
(3) the coarse-grid correction is cheap because restriction and prolongation are cheap
- but the Poisson problem is too easy!

minimal surfaces, a nonlinear problem

- recall ...

minimal surface problem
for given boundary function (wire frame) $g(x, y)$, find $u(x, y)$ so that

$$
-\nabla \cdot\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0 \text { on } \Omega,\left.\quad u\right|_{\partial \Omega}=g
$$

discretization gets you . . . more general equations

- at each point $\left(x_{i}, y_{j}\right)$ on the target (finest) grid $\Omega^{(K)}$ we discretize to get an FD approximation of the PDE:

$$
f_{i j}\left(u_{i-1, j}, u_{i+1, j}, u_{i, j-1}, u_{i, j+1}, u_{i, j}\right)=0
$$

- roughly-speaking, anyway ... see details next slide
- unknowns must be globally-ordered into a vector $\mathbf{u} \in \mathbb{R}^{N}$:

$$
u_{\ell}=u_{i, j}
$$

where $\ell=\ell(i, j)$ is a global-to-local indexing function

nonlinear discretization principle

 enforcing the PDE at grid point $\left(x_{i}, y_{j}\right)$ gives one scalar equation $f_{i j}(\mathbf{u})=0$- also globally-order the equations (functions), $f_{\ell}(\mathbf{u})=f_{i j}(\mathbf{u})$, to get a nonlinear system of N scalar equations in N scalar unknowns:

$$
\mathbf{F}(\mathbf{u})=\mathbf{0}
$$

- \mathbf{F} is a sparse function, as each f_{ℓ} depends on only $O(1)$ entries of \mathbf{u}

details: 9 -point stencil with staggered diffusivity

- how do you discretize $\nabla \cdot\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)$?
- technique: generalize first!
- discretize $\nabla \cdot(D(w) \nabla u)$ where

$$
\begin{aligned}
D(w) & =(1+w)^{-1 / 2} \\
w & =|\nabla u|^{2}
\end{aligned}
$$

- centered FD, using staggered values of $D(w)$, gets $O\left(h_{x}^{2}+h_{y}^{2}\right)$ truncation error and symmetry:

$$
\begin{aligned}
& \nabla \cdot(D(w) \nabla u) \approx \frac{D\left(w_{e}\right)\left(u_{i+1, j}-u_{i, j}\right)-D\left(w_{w}\right)\left(u_{i, j}-u_{i-1, j}\right)}{h_{x}^{2}} \\
&+\frac{D\left(w_{n}\right)\left(u_{i, j+1}-u_{i, j}\right)-D\left(w_{s}\right)\left(u_{i, j}-u_{i, j-1}\right)}{h_{y}^{2}} \\
& w_{e}=\left[|\nabla u|^{2}\right]_{i+\frac{1}{2}, j} \approx\left(\frac{u_{i+1, j}-u_{i, j}}{h_{x}}\right)^{2}+\left(\frac{u_{i, j+1}+u_{i+1, j+1}-u_{i, j}-u_{i+1, j}}{4 h_{y}}\right)^{2}
\end{aligned}
$$

9-point stencil Jacobian: sparsity

- on a 6×6 grid, the Jacobian $J(\mathbf{v})$ has this sparsity pattern:

Newton's method

- Q: how do we solve our nonlinear system $\mathbf{F}(\mathbf{u})=\mathbf{0}$?

A: Newton's method!:

$$
\begin{aligned}
J\left(\mathbf{u}^{p}\right) \mathbf{s} & =-\mathbf{F}\left(\mathbf{u}^{p}\right) \\
\mathbf{u}^{p+1} & =\mathbf{u}^{p}+\mathbf{s}
\end{aligned}
$$

where $J(\mathbf{v})$ is the Jacobian

$$
J(\mathbf{v})_{r, s}=\left[\frac{\partial f_{r}(\mathbf{v})}{\partial v_{s}}\right]
$$

- Q: how do you calculate the Jacobian? (cause it's a pain in the ...) A: more finite differencing:

A^{\prime} : symbolically?

Newton's method with finite-differenced Jacobian

- Q: how do we solve our nonlinear system $\mathbf{F}(\mathbf{u})=\mathbf{0}$?

A: Newton's method!:

$$
\begin{aligned}
J\left(\mathbf{u}^{p}\right) \mathbf{s} & =-\mathbf{F}\left(\mathbf{u}^{p}\right) \\
\mathbf{u}^{p+1} & =\mathbf{u}^{p}+\mathbf{s}
\end{aligned}
$$

where $J(\mathbf{v})$ is the Jacobian

$$
J(\mathbf{v})_{r, s}=\left[\frac{\partial f_{r}(\mathbf{v})}{\partial v_{s}}\right]
$$

- Q: how do you calculate the Jacobian? (cause it's a pain in the ...)

A: more finite differencing:

$$
J(\mathbf{v})_{r, s} \approx \frac{f_{r}\left(\mathbf{v}+\epsilon \mathbf{1}_{s}\right)-f_{r}(\mathbf{v})}{\epsilon}
$$

A^{\prime} : symbolically?

Newton's method with finite-differenced Jacobian

- Q: how do we solve our nonlinear system $\mathbf{F}(\mathbf{u})=\mathbf{0}$?

A: Newton's method!:

$$
\begin{aligned}
J\left(\mathbf{u}^{p}\right) \mathbf{s} & =-\mathbf{F}\left(\mathbf{u}^{p}\right) \\
\mathbf{u}^{p+1} & =\mathbf{u}^{p}+\mathbf{s}
\end{aligned}
$$

where $J(\mathbf{v})$ is the Jacobian

$$
J(\mathbf{v})_{r, s}=\left[\frac{\partial f_{r}(\mathbf{v})}{\partial v_{s}}\right]
$$

- Q: how do you calculate the Jacobian? (cause it's a pain in the ...)

A: more finite differencing:

$$
J(\mathbf{v})_{r, s} \approx \frac{f_{r}\left(\mathbf{v}+\epsilon \mathbf{1}_{s}\right)-f_{r}(\mathbf{v})}{\epsilon}
$$

A^{\prime} : symbolically?

- Q: how do you efficiently calculate the FD Jacobian? A: graph coloring

Newton-multigrid

- Q: how do you solve each linear system in the Newton iteration?

A: solve $J\left(\mathbf{u}^{p}\right) \mathbf{s}=-\mathbf{F}\left(\mathbf{u}^{p}\right)$ using multigrid:

```
def newtonmultigrid(v,lev,maxnewts=50, cycles=1):
    for }\textrm{p}\mathrm{ in range(maxnewts):
        b}=-\textrm{F}(\textrm{v}
        s}=
        for _ in range(cycles):
            s = vcycle(b,s,lev)
        v}=\textrm{V}+\textrm{S
    return v
```

- details:
inside vcycle () , the matrix $A=A^{(k)}$ on each grid level $\Omega^{(k)}$ is computed
using the Jacobian on that grid level (rediscretization)
the finest-level iterate \mathbf{u}^{p} must be restricted (injected) down to $\Omega^{(k)}$:

$J^{(k)}$ is approximated using FD and graph coloring on $\Omega^{(k)}$

Newton-multigrid

- Q: how do you solve each linear system in the Newton iteration?

A: solve $J\left(\mathbf{u}^{p}\right) \mathbf{s}=-\mathbf{F}\left(\mathbf{u}^{p}\right)$ using multigrid:

```
def newtonmultigrid(v,lev,maxnewts=50, cycles=1):
    for }P\mathrm{ in range(maxnewts):
        b}=-\textrm{F}(\textrm{v}
        s}=
        for _ in range(cycles):
            s = vcycle(b,s,lev)
    v}=\textrm{V}+\textrm{S
    return v
```

- details:
- inside vcycle (), the matrix $A=A^{(k)}$ on each grid level $\Omega^{(k)}$ is computed using the Jacobian on that grid level (rediscretization)
- the finest-level iterate \mathbf{u}^{p} must be restricted (injected) down to $\Omega^{(k)}$:

$$
A^{(k)}=J^{(k)}\left(R^{K-k} \mathbf{u}^{p}\right)
$$

- $J^{(k)}$ is approximated using FD and graph coloring on $\Omega^{(k)}$

nonlinear multigrid F-cycle solvers

- but wait, ... there's more!
- Q: how do you find a good initial iterate \mathbf{u}^{0} for the Newton iteration?

A: by solving the problem on a coarser grid, and prolonging

- justification: the domain of Newton convergence is larger on the smaller (= coarser) version of the PDE
- this strategy is called mested iteration or grid sequencing
- if you also solve at each level with Newton-multigrid, then this is a nonlinear multigrid F-cycle . . . the most powerful solver you've seen!

nonlinear multigrid F-cycle solvers

- but wait, ... there's more!
- Q: how do you find a good initial iterate \mathbf{u}^{0} for the Newton iteration?

A: by solving the problem on a coarser grid, and prolonging

- justification: the domain of Newton convergence is larger on the smaller (= coarser) version of the PDE
- this strategy is called nested iteration or grid sequencing
- if you also solve at each level with Newton-multigrid, then this is a nonlinear multigrid F-cycle . . . the most powerful solver you've seen!

nonlinear multigrid F-cycle solvers

- but wait, ... there's more!
- Q: how do you find a good initial iterate \mathbf{u}^{0} for the Newton iteration?

A: by solving the problem on a coarser grid, and prolonging

- justification: the domain of Newton convergence is larger on the smaller (= coarser) version of the PDE
- this strategy is called nested iteration or grid sequencing
- if you also solve at each level with Newton-multigrid, then this is a nonlinear multigrid F-cycle . . . the most powerful solver you've seen!

minimal surface PDE problem: results

- run-time demo:
\$ cd p4pdes/c/ch7/
\$ make minimal

minimal surface PDE problem: results

- run-time demo:
\$ cd p4pdes/c/ch7/
\$ make minimal
\$ mpiexec -n 6 ./minimal -snes_fd_color -pc_type mg \}
-\{snes,ksp\}_converged_reason -snes_grid_sequence 10

summary

- a multigrid V-cycle combines three conceptual threads to build an optimal solver for linear elliptic PDEs:
(1) classical iterations = cheap smoothers
(2) coarse-grid correction effective, if starting from a smooth residual
(3) restriction and prolongation are cheap
- there is also algebraic multigrid, but that is a different talk ...
- for nonlinear elliptic PDEs:
© wrap a Newton iteration around multigrid V-cycles: Newton-multigrid
(3) grid sequencing generates a high-quality finest-grid initial iterate
- thus: a nonlinear multtgrid F-cycle solver
- Newton-multigrid is not the only nonlinear option ... there is also full approximation scheme multigrid, but that is a different talk

summary

- a multigrid V-cycle combines three conceptual threads to build an optimal solver for linear elliptic PDEs:
(1) classical iterations = cheap smoothers
(2) coarse-grid correction effective, if starting from a smooth residual
(3) restriction and prolongation are cheap
- there is also algebraic multigrid, but that is a different talk ...
- for nonlinear elliptic PDEs:
(1) wrap a Newton iteration around multigrid V-cycles: Newton-multigrid
(2) grid sequencing generates a high-quality finest-grid initial iterate
(3) thus: a nonlinear multigrid F-cycle solver
- Newton-multigrid is not the only nonlinear option ... there is also full approximation scheme multigrid, but that is a different talk...

references

A. Brandt (1977). Multi-level adaptive solutions to boundary-value problems, Mathematics of Computation 31 (138), 333-390

- the guru of multigrid
W. Briggs, V. E. Henson, \& S. McCormick (2000). A Multigrid Tutorial, 2nd ed., SIAM Press, Philadelphia
- straightforward introduction
E. Bueler (2021). PETSc for Partial Differential Equations, SIAM Press, Philadelphia
- preconditioning ideas and diverse multigrid examples
H. Elman, D. Silvester, \& A. Wathen (2014). Finite Elements and Fast Iterative Solvers: With Applications to Incompressible Fluid Dynamics, 2nd ed., Oxford U. Press
- multigrid in FE and fluids contexts
R. Fedorenko (1961). A relaxation method for solving elliptic difference equations, USSR Comput. Math. Math. Phys. 1, 922-927
- the first multigrid paper
U. Trottenberg, C. Oosterlee, \& A. Schuller (2001). Multigrid, Elsevier
- comprehensive view, and theory

