Multigrid

optimal solvers for linear and nonlinear elliptic PDEs

Ed Bueler

UAF Math 692 Scalable Seminar

Spring 2023

Outline

- 2 simple iterations?
- 2-grid method, and the coarse-grid correction
 - V-cycle multigrid
- 5 nonlinear multigrid

a linear PDE problem

•
$$\nabla^2$$
 is a negative-definite operator

1. Poisson problem

for a given source function f(x, y), find u(x, y) so that

$$-
abla^2 u = f ext{ on } \Omega, \qquad u \big|_{\partial \Omega} = 0$$

a nonlinear PDE problem

- the second problem is nonlinear, but still elliptic
- claim 1. the area of surface z = v(x, y) over Ω is

$$I[v] = \int_{\Omega} \sqrt{1 + |\nabla v|^2} \, dx \, dy$$

• claim 2. for given g, continuous along $\partial \Omega$,

$$u = \min_{\{v : v \mid \partial \Omega = g\}} I[v]$$

solves the boundary value problem below

2. minimal surface problem

for given boundary function (wire frame) g(x, y), find u(x, y) so that

$$-\nabla \cdot \left(rac{
abla u}{\sqrt{1+|
abla u|^2}}
ight) = 0 \ ext{on } \Omega, \qquad u\big|_{\partial\Omega} = g$$

Ed Bueler

finite difference discretization

- PDEs are infinite-dimensional problems, but discretization yields finite systems of equations
- for example, finite differences (FD):

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)$$

- grid spacings: $h_x = \frac{1}{m_x 1}$, $h_y = \frac{1}{m_y 1}$
- grid points: $(x_i, y_j) = (ih_x, jh_y)$ for $i = 0, ..., m_x - 1$ and $j = 0, ..., m_y - 1$
- 5-point stencil for the Laplacian:

$$\nabla^2 u(x_i, y_j) \approx \frac{u_{i-1,j} - 2u_{ij} + u_{i+1,j}}{h_x^2} + \frac{u_{i,j-1} - 2u_{ij} + u_{i,j+1}}{h_y^2}$$

$\mathsf{PDE} \implies \mathsf{linear system } A \mathbf{u} = \mathbf{b}$

• FD discretize $-\nabla^2 u = f$:

- o note we keep the boundary values in the system
- $N = m_x m_y$ total unknowns on the grid
 - $m_x = 4, m_y = 3$ shown at right
- unknowns $\{u_{ij}\}$ are globally ordered: $u_{\ell} = u_{ij}$
- get a linear system for $\mathbf{u} \in \mathbb{R}^N$:

• $A \in \mathbb{R}^{N \times N}$ is sparse

- A has positive diagonal
- A is symmetric positive definite
- A has O(1) nonzeros per row \leftarrow at most 5, actually

• $\mathbf{b} \in \mathbb{R}^N$ has entries $b_\ell = f(x_i, y_j)$

- for $m_x = m_y = 5$: 9 non-trivial eqns (middle right)
- for $m_x = m_y = 8$: 36 non-trivial eqns (lower right)

• the linear system $A\mathbf{u} = \mathbf{b}$ can be set-up using 6N memory locations

- A has 5 nonzero entries per row, plus one entry of b
- can we solve $A \mathbf{u} = \mathbf{b}$ in O(N) work and time as $N \to \infty$?
 - o if so, the solver is optimal

• *A* is banded, with bandwidth $\approx \min\{m_x, m_y\} \approx \sqrt{N}$ • so banded Gaussian elimination will solve in $O(N^2)$

• let's back up and ask:

what operations using our A are obviously O(N)?

• the linear system $A\mathbf{u} = \mathbf{b}$ can be set-up using 6N memory locations

- A has 5 nonzero entries per row, plus one entry of b
- can we solve $A \mathbf{u} = \mathbf{b}$ in O(N) work and time as $N \to \infty$?
 - if so, the solver is optimal
- A is banded, with bandwidth $\approx \min\{m_x, m_y\} \approx \sqrt{N}$
 - so banded Gaussian elimination will solve in $O(N^2)$

Iet's back up and ask:

what operations using our A are obviously O(N)?

• the linear system $A\mathbf{u} = \mathbf{b}$ can be set-up using 6N memory locations

- A has 5 nonzero entries per row, plus one entry of b
- can we solve $A \mathbf{u} = \mathbf{b}$ in O(N) work and time as $N \to \infty$?
 - if so, the solver is optimal
- A is banded, with bandwidth $\approx \min\{m_x, m_y\} \approx \sqrt{N}$
 - so banded Gaussian elimination will solve in $O(N^2)$
- Iet's back up and ask:

what operations using our A are obviously O(N)?

cheap O(N) operations: mat-vec and residual

for A from PDE discretization, we can compute Av in O(N) flops
 this is because A has O(1) nonzero entries per row

• also the residual is O(N)

Definition

given $\mathbf{v} \in \mathbb{R}^N$, the *residual* for the linear system $A\mathbf{u} = \mathbf{b}$ is

$$\mathbf{r}(\mathbf{v}) = \mathbf{b} - A\mathbf{v}$$

observe that:

$$A\mathbf{u} = \mathbf{b} \iff \mathbf{r}(\mathbf{u}) = \mathbf{0}$$

are simple iterations cheap O(N) operations?

Definition

for the linear system $A\mathbf{u} = \mathbf{b}$ and an invertible matrix $M \in \mathbb{R}^{N \times N}$, simple iteration is

$$\mathbf{v}_{k+1} = \mathbf{v}_k + \alpha M^{-1} \underbrace{(\mathbf{b} - A\mathbf{v}_k)}_{=\mathbf{r}(\mathbf{v}_k)}$$

• $\alpha \in \mathbb{R}$ is a tuning parameter, with default $\alpha = 1$

• if M = A and $\alpha = 1$ then $\mathbf{v}_{k+1} = \mathbf{u}$, so one iteration solves it!

• ... not practical, and usually not O(N)

- *Richardson iteration* $\mathbf{v}_{k+1} = \mathbf{v}_k + \alpha \mathbf{r}(\mathbf{v}_k)$ is the M = I case
 - observation: Richardson iteration for the Poisson equation is *gradient* descent for the quadratic functional $I[v] = \alpha \int_{\Omega} \frac{1}{2} |\nabla v|^2 fv$
 - each Richardson iteration is clearly O(N) work
- a simple iteration is $O(N) \dots$ if M is the right kind of matrix!

Definition

if a matrix or linear map $M \in \mathbb{R}^{N \times N}$ is invertible, we say

$$M^{-1}Au = M^{-1}b$$

is a *(left-) preconditioned* system for $A \mathbf{u} = \mathbf{b}$

- the preconditioned system has the same solutions as before
- the new residual is $\tilde{\mathbf{r}}(\mathbf{v}) = M^{-1}\mathbf{b} M^{-1}A\mathbf{v}$
- observation: Richardson iteration on the new system is equivalent to simple iteration

$$\mathbf{v}_{k+1} = \mathbf{v}_k + \alpha \, \tilde{\mathbf{r}}(\mathbf{v}) \quad \iff \quad \mathbf{v}_{k+1} = \mathbf{v}_k + \alpha \, M^{-1} \, (\mathbf{b} - A \mathbf{v}_k)$$

Definition

a matrix or linear map *M* is a *fast preconditioner* if solving $M\mathbf{z} = \mathbf{c}$ requires O(N) work

- example: if A has nonzero diagonal entries, the diagonal M = D is a fast preconditioner
- do *not* actually form the matrix M^{-1} when solving $M\mathbf{z} = \mathbf{c}$
- warning: a preconditioner *M* can be fast without being a useful tool!
- preconditioning is an apparently simple idea, but in the 21st century it is used all over the space of solvers

O(N) simple iterations: Jacobi and Gauss-Seidel

• suppose we split A into diagonal and triangular parts:

$$A = D + L + U$$

• the linear system can be rearranged using the splitting:

$$A \mathbf{u} = \mathbf{b} \iff D\mathbf{u} = \mathbf{b} - (L+U)\mathbf{u}$$

 $\iff \mathbf{u} = \mathbf{u} + D^{-1}(\mathbf{b} - A\mathbf{u})$

• solving
$$D\mathbf{z} = \mathbf{c}$$
 is $O(N)$

Definition

a Jacobi iteration applies a fast preconditioner:

$$\mathbf{v}_{k+1} = \mathbf{v}_k + D^{-1}(\mathbf{b} - A\mathbf{v}_k)$$

O(N) simple iterations: Jacobi and Gauss-Seidel

• suppose we split A into diagonal and triangular parts:

$$A = D + L + U$$

• the linear system can be rearranged using the splitting:

$$A \mathbf{u} = \mathbf{b} \iff (D+L)\mathbf{u} = \mathbf{b} - U\mathbf{u}$$

 $\iff \mathbf{u} = \mathbf{u} + (D+L)^{-1}(\mathbf{b} - A\mathbf{u})$

• solving $(D + L)\mathbf{z} = \mathbf{c}$ is O(N) (for our A)

Definition

a Gauss-Seidel (GS) iteration applies a fast preconditioner:

$$\mathbf{v}_{k+1} = \mathbf{v}_k + (D+L)^{-1}(\mathbf{b} - A\mathbf{v}_k)$$

example of Gauss-Seidel iteration

the matrix-splitting view obscures the simplicity of Gauss-Seidel? *example*: consider the linear system Au = b with

$$A = \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & -1 & 2 & -1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 & -1 \\ & & & & -1 & 2 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_N \end{bmatrix}$$

o in this case, Gauss-Seidel iteration computes

$$v_{j}^{[k+1]} = \frac{b_{j}}{2} + \frac{1}{2} \left(v_{j-1}^{[k+1]} + v_{j+1}^{[k]} \right)$$

- this is a *relaxation* method ... update *v_j* using average of neighbors
- one can prove this method converges
- $\circ~$ this example is relevant because A $\sim -\nabla^2$ in 1D

Jacobi and Gauss-Seidel iterations as solvers

- for the Poisson problem linear system Au = b, one can prove that Gauss-Seidel and Jacobi converge
- but, after initial progress, residual norm decrease is *agonizingly slowly* on fine grids
- these simple iterations stagnate
- an iteration v_{k+1} = φ(v_k) stagnates or stalls if the ratio of successive residual norms {||r(v_{k+1})||/|r(v_k)||} goes to one

• Achi Brandt, an inventor of multigrid:

Stalling numerical processes must be wrong. Whenever the computer grinds very hard for small or slow effect, there must be a better way to achieve the same goal.

Ed Bueler

Jacobi and Gauss-Seidel iterations as solvers

- for the Poisson problem linear system Au = b, one can prove that Gauss-Seidel and Jacobi converge
- but, after initial progress, residual norm decrease is *agonizingly slowly* on fine grids
- these simple iterations stagnate
- an iteration v_{k+1} = φ(v_k) stagnates or stalls if the ratio of successive residual norms {||r(v_{k+1})||/|r(v_k)||} goes to one
 - Achi Brandt, an inventor of multigrid:

Stalling numerical processes must be wrong. Whenever the computer grinds very hard for small or slow effect, there must be a better way to achieve the same goal.

Ed Bueler

Jacobi and Gauss-Seidel iterations as smoothers

- observation: functions become much smoother after a few iterations
- the first multigrid paper (Federenko, 1961) observed this?

Jacobi and Gauss-Seidel iterations as smoothers

- observation: functions become much smoother after a few iterations
- the first multigrid paper (Federenko, 1961) observed this?

grid transfers

 multiple grid resolutions will allow us to exploit smoothers to generate fast solutions, but we need grid transfer operators between the different grids

- for a function v defined on a finer grid, define its restriction Rv to a coarser grid to be its value on the coarse grid points (*injection*), or restrict by averaging onto the coarser grid (*full weighting*)
- for a function **w** defined on the coarser grid, define its *prolongation Pw* to a finer grid by (linear) *interpolation*
- *R*, *P* are linear operators
 - R, P are rectangular (non-square) matrices
 - RP = I, or approximately so

2-arid method

put these ideas together!

• the 2-grid method approximately solves the PDE on the finer grid:

```
def twogrid(v,pre=2,post=2):
    for k in range(pre):
         v = smooth(A, b, v)
    rc = restrict(b - A * v)
    ec = solve(Ac, rc)
                              # solve error equation
    v = v + prolong(ec)
    for k in range(post):
         v = smooth(A, b, v)
    return v
```

where

A,b = discretize(m,m) # fine grid Ac, _ = discretize(m/2,m/2) # coarse grid

- smooth() does one Jacobi or GS iteration
- solve () might be Gaussian elimination, etc., for $A^c e^c = r^c$

- what do I mean by the error equation?
- for the linear system $A\mathbf{u} = \mathbf{b}$, consider some \mathbf{v} which is *not* a solution

Definition

for any vector \mathbf{v} , the *error equation* corresponding to the linear system $A\mathbf{u} = \mathbf{b}$ is the equation

$$Ae = r(v)$$

• here's the logic:

$\mathbf{e} = \mathbf{u} - \mathbf{v}$	definition of the error		
$A \mathbf{e} = A \mathbf{u} - A \mathbf{v}$	multiply by A		
$A \mathbf{e} = \mathbf{b} - A \mathbf{v} = \mathbf{r}(\mathbf{v})$	error equation		

the coarse grid correction

- the essential 3 lines in twogrid() form a coarse-grid correction:
 - ec = solve(Ac, rc)v = v + prolong(ec)
- rc = restrict(b A*v) # restrict the residual
 - # coarse-grid solve
 - # add back as correction
- this is a kind of simple iteration: $\mathbf{v} \leftarrow \mathbf{v} + P(A^c)^{-1}R(\mathbf{b} A\mathbf{v})$
- define the coarse-grid correction matrix:

$$B^c = P(A^c)^{-1}R$$

so twogrid() mixes two flavors of simple iteration:

 $\mathbf{v} \leftarrow \mathbf{v} + M^{-1}(\mathbf{b} - A\mathbf{v})$ the smoother $\mathbf{v} \leftarrow \mathbf{v} + B^c (\mathbf{b} - A\mathbf{v})$ the coarse-grid correction

• Q is $B^c \approx A^{-1}$?

the coarse grid correction

• the essential 3 lines in twogrid() form a coarse-grid correction:

- rc = restrict(b A*v) ec = solve(Ac,rc) v = v + prolong(ec)
- rc = restrict(b A*v) # restrict the residual
 - # coarse-grid solve
 - # add back as correction
- this is a kind of simple iteration:

$$\mathbf{v} \leftarrow \mathbf{v} + P(A^c)^{-1}R(\mathbf{b} - A\mathbf{v})$$

• define the coarse-grid correction matrix:

$$B^c = P(A^c)^{-1}R$$

• so twogrid() mixes two flavors of simple iteration:

 $\begin{aligned} \mathbf{v} \leftarrow \mathbf{v} + M^{-1}(\mathbf{b} - A\mathbf{v}) & the \, smoother \\ \mathbf{v} \leftarrow \mathbf{v} + B^c(\mathbf{b} - A\mathbf{v}) & the \, coarse-grid \, correction \end{aligned}$

• Q: is $B^c \approx A^{-1}$?

A: yes, but only for smooth inputs

2-grid method: the effect on error

• look at twogrid() again:

```
def twogrid(v,pre=2,post=2):
    for k in range(pre):
        v = smooth(A,b,v)
    rc = restrict(b - A*v)
    ec = solve(Ac,rc)
    v = v + prolong(ec)
    for k in range(post):
        v = smooth(A,b,v)
    return v
```

• a fairly-quick calculation shows that twogrid() applies a linear operator, which is close to the zero operator, to e = u - v:

$$\mathbf{e} \leftarrow (I - M^{-1}A)^{\text{post}}(I - B^{c}A)(I - M^{-1}A)^{\text{pre}}\mathbf{e}$$

• Q: how should we solve the coarse-grid problem $A^c e^c = r^c$?

2-grid method: the effect on error

• look at twogrid() again:

```
def twogrid(v,pre=2,post=2):
    for k in range(pre):
        v = smooth(A,b,v)
    rc = restrict(b - A*v)
    ec = solve(Ac,rc)
    v = v + prolong(ec)
    for k in range(post):
        v = smooth(A,b,v)
    return v
```

• a fairly-quick calculation shows that twogrid() applies a linear operator, which is close to the zero operator, to e = u - v:

$$\mathbf{e} \leftarrow (I - M^{-1}A)^{\texttt{post}}(I - B^{c}A)(I - M^{-1}A)^{\texttt{pre}}\mathbf{e}$$

Q: how should we solve the coarse-grid problem A^ce^c = r^c?

- A: if we can have two levels of grids, we can have many!
- when faced with a coarse-grid solve, just do another 2-grid ... and keep going down to some really easy and cheap coarse grid

• restrictions *R* and prolongations *P* are needed in this grid hierarchy

E	b=	Bu	el	er

recursive V-cycle

```
def vcycle(b,v,lev,pre=2,post=2):
A,_ = discretize(lev)
if lev == 0:
    return solve(A,b)  # the buck stops here
for k in range(pre):
    v = smooth(A,b,v)
rc = restrict(b - A*v)
ec = vcycle(r,0,lev-1)  # descend a grid level
v = v + prolong(ec)
for k in range(post):
    v = smooth(A,b,v)
return v
```


Multigrid

how well does it work?

• so, how well does it work on our Poisson problem $-\nabla^2 u = f$?

absurdly well!

• here is scaling out to m = 4097, when $N = 1.6 \times 10^7$

how well does it work?

• so, how well does it work on our Poisson problem $-\nabla^2 u = f$?

- absurdly well!
- here is scaling out to m = 4097, when $N = 1.6 \times 10^7$

on multigrid costs: single V-cycle

- let us analyze the work (flops) of applying a single V-cycle
 - note: multiple V-cycles are generally needed to solve the problem

Definitions

$$|\Omega^{(k)}| = ($$
number of grid points (unknowns) on grid $\Omega^{(k)})$

 $W_k^{k-1} = \begin{pmatrix} \text{smoother work done on grid } \Omega^{(k)}, \text{ plus cost of} \\ \text{restriction/prolongation to/from next-coarser grid } \Omega^{(k-1)} \end{pmatrix}$

 $W_0 = ($ solver work done on the coarsest level)

• *K* = 3 case:

Multigrid

on multigrid costs: single V-cycle

total cost of a single V-cycle:

$$\overline{W} = W_{K}^{K-1} + W_{K-1}^{K-2} + \cdots + W_{1}^{0} + W_{0}$$

for 2D grids, each coarse grid is 4 times smaller:

$$|\Omega^{(k-1)}| \approx \frac{1}{4} |\Omega^{(k)}|$$

since smoothers and restriction/prolongation are O(1) per grid point:

$$W_k^{k-1} \leq C |\Omega^{(k)}|$$

• for some C independent of k

• since $N = |\Omega^{(K)}|$ is the number of points in the finest grid,

$$\begin{split} \overline{W} &\leq C |\Omega^{(K)}| + C |\Omega^{(K-1)}| + \dots + C |\Omega^{(1)}| + W_0 \\ &\approx CN \left(1 + \frac{1}{4} + \dots + \frac{1}{4^{K-1}} \right) + W_0 \\ &\approx CN \frac{1}{1 - (1/4)} = \frac{4}{3}CN \quad \text{optimal} \end{split}$$

25/37

on multigrid costs: single V-cycle

total cost of a single V-cycle:

$$\overline{W} = W_{K}^{K-1} + W_{K-1}^{K-2} + \cdots + W_{1}^{0} + W_{0}$$

for 2D grids, each coarse grid is 4 times smaller:

$$|\Omega^{(k-1)}| \approx \frac{1}{4} |\Omega^{(k)}|$$

since smoothers and restriction/prolongation are O(1) per grid point:

$$W_k^{k-1} \leq C |\Omega^{(k)}|$$

• for some C independent of k

• since $N = |\Omega^{(K)}|$ is the number of points in the finest grid,

$$\begin{split} \overline{W} &\leq C |\Omega^{(K)}| + C |\Omega^{(K-1)}| + \dots + C |\Omega^{(1)}| + W_0 \\ &\approx CN \left(1 + \frac{1}{4} + \dots + \frac{1}{4^{K-1}} \right) + W_0 \\ &\approx CN \frac{1}{1 - (1/4)} = \frac{4}{3}CN \quad \text{optimal} \end{split}$$

multigrid variations

• there are many variations on linear multigrid:

- choose different smoothers (● is pre-smoother, is post-smoother)
- $\circ~$ choose different values for ${\tt pre}~{\tt and}~{\tt post}~{\tt smoother}$ iterations
- choose different coarse-grid solvers (□)
- repeat the coarse-grid correction a couple of times (W cycles)

• multigrid combines three conceptual threads:

- a few classical iterations, such as Jacobi and GS, are cheap smoothers of the residual and the error
- a coarse-grid correction does a good job of updating the fine-grid solution when acting on a smooth residual
- the coarse-grid correction is cheap because restriction and prolongation are cheap
- but the Poisson problem is too easy!

minimal surfaces, a nonlinear problem

minimal surface problem

for given boundary function (wire frame) g(x, y), find u(x, y) so that

$$-\nabla \cdot \left(rac{
abla u}{\sqrt{1+|
abla u|^2}}
ight) = 0 \, ext{ on } \Omega, \qquad u \big|_{\partial\Omega} = g$$

discretization gets you ... more general equations

• at each point (x_i, y_j) on the target (finest) grid $\Omega^{(K)}$ we discretize to get an FD approximation of the PDE:

$$f_{ij}(u_{i-1,j}, u_{i+1,j}, u_{i,j-1}, u_{i,j+1}, u_{i,j}) = 0$$

- o roughly-speaking, anyway ... see details next slide
- unknowns must be globally-ordered into a vector $\mathbf{u} \in \mathbb{R}^N$:

$$U_{\ell} = U_{i,j}$$

where $\ell = \ell(i, j)$ is a global-to-local indexing function

nonlinear discretization principle enforcing the PDE at grid point (x_i , y_j) gives one scalar equation $f_{ij}(\mathbf{u}) = 0$

also globally-order the equations (functions), *f*_ℓ(**u**) = *f*_{ij}(**u**), to get a nonlinear system of *N* scalar equations in *N* scalar unknowns:

$$\mathbf{F}(\mathbf{u}) = \mathbf{0}$$

• **F** is a sparse function, as each f_{ℓ} depends on only O(1) entries of **u**

Ed Bueler

details: 9-point stencil with staggered diffusivity

• how do you discretize
$$\nabla \cdot \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right)$$
?

- technique: generalize first!
- discretize $\nabla \cdot (D(w)\nabla u)$ where

$$D(w) = (1 + w)^{-1/2}$$
$$w = |\nabla u|^2$$

• centered FD, using *staggered* values of D(w), gets $O(h_x^2 + h_y^2)$ truncation error and symmetry:

$$\nabla \cdot (D(w)\nabla u) \approx \frac{D(w_e)(u_{i+1,j} - u_{i,j}) - D(w_w)(u_{i,j} - u_{i-1,j})}{h_x^2} + \frac{D(w_h)(u_{i,j+1} - u_{i,j}) - D(w_s)(u_{i,j} - u_{i,j-1})}{h_y^2}$$
$$w_e = \left[|\nabla u|^2 \right]_{i+\frac{1}{2},j} \approx \left(\frac{u_{i+1,j} - u_{i,j}}{h_x} \right)^2 + \left(\frac{u_{i,j+1} + u_{i+1,j+1} - u_{i,j} - u_{i+1,j}}{4h_y} \right)^2$$

9-point stencil Jacobian: sparsity

• on a 6 × 6 grid, the Jacobian $J(\mathbf{v})$ has this sparsity pattern:

Newton's method

Q: how do we solve our nonlinear system F(u) = 0?
 A: Newton's method!:

$$egin{array}{ll} J(\mathbf{u}^{
ho})\,\mathbf{s} = -\mathbf{F}(\mathbf{u}^{
ho}) \ \mathbf{u}^{
ho+1} = \mathbf{u}^{
ho} + \mathbf{s} \end{array}$$

where $J(\mathbf{v})$ is the Jacobian

$$J(\mathbf{v})_{r,s} = \left[\frac{\partial f_r(\mathbf{v})}{\partial v_s}\right]$$

Q: how do you calculate the Jacobian? (*cause it's a pain in the ...*)
 A: more finite differencing:

$$J(\mathbf{v})_{r,s} \approx \frac{f_r(\mathbf{v} + \epsilon \mathbf{1}_s) - f_r(\mathbf{v})}{\epsilon}$$

A': symbolically?

F - 4	D	-1
	ъч	

Spring 2023

Newton's method with finite-differenced Jacobian

Q: how do we solve our nonlinear system F(u) = 0?
 A: Newton's method!:

$$egin{aligned} J(\mathbf{u}^{
ho})\,\mathbf{s} &= -\mathbf{F}(\mathbf{u}^{
ho})\ \mathbf{u}^{
ho+1} &= \mathbf{u}^{
ho} + \mathbf{s} \end{aligned}$$

where $J(\mathbf{v})$ is the Jacobian

$$J(\mathbf{v})_{r,s} = \left[\frac{\partial f_r(\mathbf{v})}{\partial v_s}\right]$$

Q: how do you calculate the Jacobian? (*cause it's a pain in the ...*)
 A: more finite differencing:

$$J(\mathbf{v})_{r,s} \approx \frac{f_r(\mathbf{v} + \epsilon \mathbf{1}_s) - f_r(\mathbf{v})}{\epsilon}$$

A': symbolically?

Ed	D.,		~
	ъι.	I AI	er
_	_		

Newton's method with finite-differenced Jacobian

Q: how do we solve our nonlinear system F(u) = 0?
 A: Newton's method!:

$$egin{aligned} J(\mathbf{u}^{
ho})\,\mathbf{s} &= -\mathbf{F}(\mathbf{u}^{
ho})\ \mathbf{u}^{
ho+1} &= \mathbf{u}^{
ho} + \mathbf{s} \end{aligned}$$

where $J(\mathbf{v})$ is the Jacobian

$$J(\mathbf{v})_{r,s} = \left[\frac{\partial f_r(\mathbf{v})}{\partial v_s}\right]$$

Q: how do you calculate the Jacobian? (*cause it's a pain in the ...*)
 A: more finite differencing:

$$J(\mathbf{v})_{r,s} \approx \frac{f_r(\mathbf{v} + \epsilon \mathbf{1}_s) - f_r(\mathbf{v})}{\epsilon}$$

A': symbolically?

• Q: how do you *efficiently* calculate the FD Jacobian? A: graph coloring

Ed Bueler

Newton-multigrid

• Q: how do you solve each linear system in the Newton iteration?

A: solve $J(\mathbf{u}^{p}) \mathbf{s} = -\mathbf{F}(\mathbf{u}^{p})$ using multigrid:

```
def newtonmultigrid(v,lev,maxnewts=50,cycles=1):
    for p in range(maxnewts):
        b = -F(v)
        s = 0
        for _ in range(cycles):
            s = vcycle(b,s,lev)
        v = v + s
    return v
```

o details:

- inside vcycle(), the matrix $A = A^{(k)}$ on each grid level $\Omega^{(k)}$ is computed using the Jacobian on that grid level (*rediscretization*)
- the finest-level iterate \mathbf{u}^{p} must be restricted (injected) down to $\Omega^{(k)}$:

$$A^{(k)} = J^{(k)}(R^{K-k}\mathbf{u}^{p})$$

 $\circ~J^{(k)}$ is approximated using FD and graph coloring on $\Omega^{(k)}$

33/37

Newton-multigrid

• Q: how do you solve each linear system in the Newton iteration?

A: solve $J(\mathbf{u}^{p}) \mathbf{s} = -\mathbf{F}(\mathbf{u}^{p})$ using multigrid:

```
def newtonmultigrid(v,lev,maxnewts=50,cycles=1):
    for p in range(maxnewts):
        b = -F(v)
        s = 0
        for _ in range(cycles):
            s = vcycle(b,s,lev)
        v = v + s
    return v
```

o details:

- inside vcycle(), the matrix $A = A^{(k)}$ on each grid level $\Omega^{(k)}$ is computed using the Jacobian on that grid level (*rediscretization*)
- the finest-level iterate \mathbf{u}^{p} must be restricted (injected) down to $\Omega^{(k)}$:

$$\boldsymbol{A}^{(k)} = \boldsymbol{J}^{(k)}(\boldsymbol{R}^{K-k} \mathbf{u}^{p})$$

• $J^{(k)}$ is approximated using FD and graph coloring on $\Omega^{(k)}$

nonlinear multigrid F-cycle solvers

- but wait, ... there's more!
- Q: how do you find a good initial iterate u⁰ for the Newton iteration?
 A: by solving the problem on a coarser grid, and prolonging
- justification: the domain of Newton convergence is larger on the smaller (= coarser) version of the PDE
- this strategy is called *nested iteration* or *grid sequencing*
- if you also solve at each level with Newton-multigrid, then this is a *nonlinear multigrid F-cycle*...the most powerful solver you've seen!

nonlinear multigrid F-cycle solvers

- but wait, ... there's more!
- Q: how do you find a good initial iterate **u**⁰ for the Newton iteration?
 - A: by solving the problem on a coarser grid, and prolonging
- justification: the domain of Newton convergence is larger on the smaller (= coarser) version of the PDE
- this strategy is called nested iteration or grid sequencing
- if you also solve at each level with Newton-multigrid, then this is a *nonlinear multigrid F-cycle*...the most powerful solver you've seen!

nonlinear multigrid F-cycle solvers

- but wait, ... there's more!
- Q: how do you find a good initial iterate **u**⁰ for the Newton iteration?

A: by solving the problem on a coarser grid, and prolonging

- justification: the domain of Newton convergence is larger on the smaller (= coarser) version of the PDE
- this strategy is called *nested iteration* or *grid sequencing*
- if you also solve at each level with Newton-multigrid, then this is a *nonlinear multigrid F-cycle*...the most powerful solver you've seen!

minimal surface PDE problem: results

run-time demo:

- \$ cd p4pdes/c/ch7/
- \$ make minimal
- \$ mpiexec -n 6 ./minimal -snes_fd_color -pc_type mg \
 -{snes,ksp}_converged_reason -snes_grid_sequence 10

⁻snes_monitor_solution draw -mg_levels_{snes,ksp}_converged_reason

minimal surface PDE problem: results

run-time demo:

- \$ cd p4pdes/c/ch7/
- \$ make minimal
- \$ mpiexec -n 6 ./minimal -snes_fd_color -pc_type mg \
 -{snes,ksp}_converged_reason -snes_grid_sequence 10

⁻snes_monitor_solution draw -mg_levels_{snes,ksp}_converged_reason

summary

- a multigrid V-cycle combines three conceptual threads to build an optimal solver for linear elliptic PDEs:
 - classical iterations = cheap smoothers
 - coarse-grid correction effective, if starting from a smooth residual
 - restriction and prolongation are cheap

there is also algebraic multigrid, but that is a different talk ...

• for nonlinear elliptic PDEs:

wrap a Newton iteration around multigrid V-cycles: Newton-multigrid

- grid sequencing generates a high-quality finest-grid initial iterate
- thus: a nonlinear multigrid F-cycle solver
- Newton-multigrid is not the only nonlinear option ... there is also **full approximation scheme** multigrid, but that is a different talk ...

summary

- a multigrid V-cycle combines three conceptual threads to build an optimal solver for linear elliptic PDEs:
 - classical iterations = cheap smoothers
 - coarse-grid correction effective, if starting from a smooth residual
 - restriction and prolongation are cheap
- there is also algebraic multigrid, but that is a different talk ...
- for nonlinear elliptic PDEs:
 - wrap a Newton iteration around multigrid V-cycles: Newton-multigrid
 - grid sequencing generates a high-quality finest-grid initial iterate
 - thus: a nonlinear multigrid F-cycle solver
- Newton-multigrid is not the only nonlinear option ... there is also full approximation scheme multigrid, but that is a different talk ...

references

A. Brandt (1977). *Multi-level adaptive solutions to boundary-value problems*, Mathematics of Computation 31 (138), 333–390

o the guru of multigrid

W. Briggs, V. E. Henson, & S. McCormick (2000). A Multigrid Tutorial, 2nd ed., SIAM Press, Philadelphia

o straightforward introduction

E. Bueler (2021). *PETSc for Partial Differential Equations*, SIAM Press, Philadelphia

o preconditioning ideas and diverse multigrid examples

H. Elman, D. Silvester, & A. Wathen (2014). Finite Elements and Fast Iterative Solvers: With Applications to Incompressible Fluid Dynamics, 2nd ed., Oxford U. Press

multigrid in FE and fluids contexts

R. Fedorenko (1961). A relaxation method for solving elliptic difference equations, USSR Comput. Math. Math. Phys. 1, 922–927

- o the first multigrid paper
- U. Trottenberg, C. Oosterlee, & A. Schuller (2001). Multigrid, Elsevier
 - comprehensive view, and theory

Achi Brandt

