Problem 14. Suppose A, B are disjoint sets with $A \cup B = \mathbb{R}$, and suppose that $a < b$ for all $a \in A$ and $b \in B$. Then there exists $c \in \mathbb{R}$ such that $x \le c$ for $x \in A$ and $x \ge c$ for $x \in B$.
Proof.
Problem 15. Here is an example which shows that the claim in Problem 14 is false if \mathbb{R} is replaced, in both instances, by the set of rationals \mathbb{Q} :
Problem 16. Let $a < b$ be real numbers. Define the set $T = \mathbb{Q} \cap [a, b]$. Then $\sup T = b$.
Proof.
Problem 17. By definition, a set $C \subseteq \mathbb{R}$ is dense if for any real numbers $a < b$ there is $c \in C$ so that $a < c < b$. Let T be the set of all rational numbers p/q , with $p \in \mathbb{Z}$, for which $q = 2^k$ for some $k \in \mathbb{N}$. Then T is dense.
Proof.
Problem 18.
(a) An example of two real sets A, B with $A \cap B = \emptyset$, $\sup A = \sup B$, $\sup A \notin A$, and $\sup B \notin B$ is
(b) An example of a sequence of nested open intervals $J_1 \supseteq J_2 \supseteq J_3 \supseteq \ldots$, with $S = \bigcap_{n=1}^{\infty} J_n$ nonempty and of finite cardinality, is
(c) By definition, an unbounded closed interval is of the form $[a, \infty) = \{x \in \mathbb{R} : x \ge a\}$. An example of a sequence of nested unbounded closed intervals $L_1 \supseteq L_2 \supseteq L_3 \supseteq \ldots$, with $\bigcap_{n=1}^{\infty} L_n = \emptyset$, is
Problem 19. <i>If</i> $A \subseteq B$ <i>and</i> B <i>is countable then</i> A <i>is either countable or finite.</i>
<i>Proof.</i> Assume B is countable. If $ A < \infty$ then A is finite and we are done. So we will consider an infinite subset $A \subseteq B$ and show it is countable.
Problem 20.
(a) For any $a < b$ it follows that $(a, b) \sim \mathbb{R}$.
Proof.
(b) $[0,1) \sim (0,1)$
Proof.
Problem 21. If $A \sim B$ and $B \sim C$ then $A \sim C$.

Proof.