Problem 6.

$$\bigcap_{n=1}^{\infty} (0, 1/n) = \emptyset.$$

Proof.

Problem 7. Given a function f and a subset A of its domain, consider the image $f(A) = \{f(x) : x \in A\}$.

- (a) An example of a function f, and two subsets A, B of the domain of f, for which $f(A \cap B) \neq f(A) \cap f(B)$ is
- (b) If A, B are subsets of the domain of f then $f(A \cup B)$ IS RELATED IN SOME WAY $TO \ f(A) \cup f(B)$.

 \square

Problem 8. If $a \in \mathbb{R}$ is an upper bound for $A \subset \mathbb{R}$, and if a is also an element of A, then $a = \sup A$.

Proof.

Problem 9. (a) Let $A = \{m/n : m, n \in \mathbb{N} \text{ with } m < n\}$. Then $\inf A = \text{and } \sup A = .$

- (b) Let $B = \{(-1)^m/n : n, m \in \mathbb{N}\}$. Then $\inf B = \text{and } \sup B = .$
- (c) Let $C = \{n/(3n+1) : n \in \mathbb{N}\}$. Then inf C =and $\sup C =$.
- (d) Let $D = \{m/(m+n) : m, n \in \mathbb{N}\}$. Then $\inf D =$ and $\sup D =$.

Problem 10. (a) If A and B are nonempty, bounded, and satisfy $A \subseteq B$ then $\sup A \le \sup B$.

- (b) If $\sup A < \inf B$ for nonempty sets A and B, then there exists $c \in \mathbb{R}$ such that a < c < b for all $a \in A$ and $b \in B$.
- (c) If there exists $c \in \mathbb{R}$ satisfying a < c < b for all $a \in A$ and $b \in B$ then $\sup A < \inf B$.

Problem 11. *Denote the irrational numbers by* $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$ *.*

(a) If $a, b \in \mathbb{Q}$ then $ab \in \mathbb{Q}$ and $a + b \in \mathbb{Q}$.

 \square

(b) If $a \in \mathbb{Q}$ and $t \in \mathbb{I}$ then $a + t \in \mathbb{I}$. If also $a \neq 0$ then $at \in \mathbb{I}$.

Proof.

(c)	Suppose $s,t\in\mathbb{I}$. Then PROPOSITION ABOUT WHETHER st AND $s+t$ A EITHER RATIONAL OR IRRATIONAL IN GENERAL.	.RE
Pro	oblem 12. For all $n \in \mathbb{N}$, $2^n \ge n$.	
Pro	oof.	
Pro	oblem 13. Let $y_1 = 6$ and, for each $n \in \mathbb{N}$, let $y_{n+1} = (2y_n - 6)/3$.	
(a)	For all $n \in \mathbb{N}$, $y_n \ge -6$.	
	Proof.	
(b)	The sequence $(y_1, y_2, y_3,)$ is decreasing.	
	Proof.	