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Abstract. Exact solutions for ice sheet equations can and should play an important
role in numerical model validation. In constructing a time-dependent exact solution to
the thermocoupled shallow ice approximation, it was discovered that the existing ana-
lytical steady solutions are a poor basis [1]. This prompted a search for cleaner steady
solutions to the isothermal shallow ice equation. In particular, we seek smooth solutions,
at least between central peak and margin, which have the physically realistic property,
for a grounded ice sheet, of margin–in–ablation–zone. The source of cleaner solutions is
identified here as a flux function Q whose nth root is integrable, where n is the Glen
exponent. Radially symmetric and one-horizontal dimension examples are identified.

Introduction

The steady, isothermal cold shallow ice equation [7] is

(1) a = ∇ ·Q, Q = − Γ
n+2 hn+2|∇h|n−1∇h, h ≥ 0

as an equation for surface elevation h = h(x, y) in a region in R2. Equation (1) is the special
case of an ice sheet on a flat, rigid bed, so that surface elevation and thickness coincide.
Here a = a(x, y) is the ice–equivalent accumulation/ablation function and Q = Q(x, y)
is the vertically-integrated horizontal ice flux. The constants Γ > 0 and n > 1 represent
material properties. The former depends strongly on the constant value of temperature.

Equation (1), for h given a, is second order in space and is elliptic as a PDE for h.
More precisely, in regions where h > 0, (1) can be written as a quasilinear PDE for h by
eliminating Q, that is, a = −∇· ( Γ

n+2 hn+2|∇h|n−1∇h). (A PDE is quasilinear if it is linear
in the highest derivative.) In regions where h|∇h| > 0 the PDE is second–order in space
and strictly-speaking elliptic. Generally, we say that the PDE is “degenerate elliptic.”
Most essentially, (1) is a free boundary value problem with a one–sided constraint and
more-or-less a “variational inequality” [2, 3].

One horizontal dimension

Suppose h = h(x) and therefore ∇ (h(x)) = h′(x) and ∇ · (Q(x)x̂) = Q′(x). Let
us also suppose that x = 0 represents an ice–ridge and therefore Q(0) = 0. If there is
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only one ridge then h′(x) ≤ 0 for x > 0, at least when h′ is defined. We compute that
Q(x) =

∫ x

0
a(ξ) dξ and thus Γ

n+2 h(x)n+2(−h′(x))n =
∫ x

0
a. Taking the (1/n)th power and

treating as a separable ODE gives

(2) h(x)2+2/n = h
2+2/n
0 − C1

∫ x

0

Q(ξ)1/n dξ = h
2+2/n
0 − C1

∫ x

0

(∫ ξ

0

a

)1/n

dξ, x ≥ 0,

where C1 = (2 + 2/n)(n + 2)1/nΓ−1/n. Note that if a is even then Q is odd and h is even.
These calculations are well-known [7].

Our goal here is to find convenient, exact solutions to (1), representing vaguely realistic
physical situations, suited to the testing of numerical procedures. From (2), such formulae
appear in one dimension when we find accumulation functions a(x) such that the nth
power of the integral of a is itself exactly integrable. This is relatively easy: we search for
analytically integrable f(x) for which f(x)n =

∫ x

0
a = Q(x) is a vaguely realistic horizontal

flux function.

Example 1. A simplest example [5, 7] in this context is to suppose a(x) = a0 > 0
constant and require h = 0 at a fixed position x = L (for a ice sheet symmetrical around a
ridge at x = 0). It should be understood, however, that the resulting Q cannot be extended
continuously into the ice–free region as

Q(x) =

{
a0x, in ice,

0, in ice–free region.

Recall that in this case h(x)2+2/n = h
2+2/n
0 − 2((n + 2)a0/Γ)1/nx1+1/n, which follows from

equation (2). Equivalently we may write

h(x) = C2

(
L1+1/n − |x|1+1/n

)n/(2n+2)
,

where C2 = (2n(n + 2)a0/Γ)1/(2n+2), because h0 = 2n/2n+2((n + 2)a0/Γ)1/2n+2L1/2 from the
boundary condition h(L) = 0. The functions a,Q, h are plotted in figure 1 in the case
n = 3.

Example 2. By careful choice of a piecewise constant accumulation/ablation function
a(x) we can modify the above example so that Q(x) is continuous [2, 7]. In fact, if we
again suppose an ice ridge at x = 0, we can choose R ∈ (0, L) and define functions a, Q
corresponding to two regions of constant accumulation, as follows:

a(x) =

{
a0, 0 < x < R,

a1, R < x < L,
, and Q(x) =

{
a0x, 0 < x < R,

a1(x−R) + a0R, R < x < L,
.

For Q(L) = 0 we require 0 = a1(L − R) + a0R. If a0 > 0 then a1 < 0, and furthermore if
R → L then a0 → −∞. The limiting h as R → L is given in the previous example. Let
n = 3 for simplicity. From equation (2),

h(x)8/3 = h
8/3
0 − 3

4
C1

{
a

1/3
0 x4/3, 0 < x < R,

a
1/3
0 R4/3 + a−1

1

(
(a1(x−R) + a0R)4/3 − (a0R)4/3

)
, R < x < L.
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Figure 1. If the accumulation/ablation function a is constant and h = 0 is
imposed at x = L then the resulting flux Q cannot be extended continuously
into the ice–free region. (n = 3.)
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1
 

Q(x) 

Figure 2. If the accumulation/ablation function a has the correct piecewise
constant values then the flux Q can be extended continuously into the ice–
free region. Of course, a is not continuous (n = 3).

Note that because h(L) = 0, the constants are related as h
8/3
0 = 3

4
C1(a0R)1/3L. The

functions a,Q, h are plotted in figure 2 for the case where R = 3
4
L. Unfortunately, in this

example a is not continuous.
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Note. The boundary behavior of these examples is worth recalling. In example 1, at
the boundary x = L, there is accumulation. Thus, asymptotically,1 h(x) ∼ (L−x)n/(2n+2).
For n = 3 this is a 3/8 power. In example 2 there is ablation at the boundary and thus
h(x) ∼ (L − x)1/2 (independent of the value of n [7]). One might suppose the difference
between 1/2 and 3/8 to be negligible but it is definitely not, in this context. Recall that
in the shallow ice approximation [4], the effective shear stress at the base is σ = ρgh|∇h|.
For h(x) ∼ (L−x)q near the boundary x = L we see that σ ∼ (L−x)2q−1. In the ablation
case, example 2, q = 1/2 so σ is bounded. In example 1, by contrast, with n = 3 and
q = 2/(2n + 2) = 3/8, σ ∼ (L − x)−1/4 which is unbounded. According to the Glen law,
the magnitude of the strain rates goes to infinity more strongly: ε̇ ∼ (L− x)−3/4.

Example 3. Again suppose n = 3 for simplicity but choose

Q(x) = α
(
βx1/3 + γ(L− x)1/3 − 1

)3

where α, β, γ are constants to be determined. Note Q(x) ∼ x for x near 0 and Q(x) ∼ L−x
for x near L. Determining β, γ by the conditions Q(0) = 0, Q(L) = 0, corresponding to
an ice ridge at x = 0 and the edge of the sheet at x = L, as in the previous two examples, we

find β = γ = L−1/3. Then a(x) = Q′(x) = α
L

(
( x

L
)1/3 + (1− x

L
)1/3 − 1

)2 [
( x

L
)−2/3 − (1− x

L
)−2/3

]
is the corresponding accumulation function. In figure 3 we see a(x) decays roughly linearly
for x > 0. In any case, from (2),

(3) h(x) = h0

[
1 + 2

x

L
− 3

2
(
x

L
)4/3 +

3

2
((1− x

L
)4/3 − 1)

]3/8

,

for x > 0, where α, h0 are related by α1/3C1L = 2h
8/3
0 , h0 = h(0), and C1 = (8/3)(5/Γ)1/3

as in (2). The functions a,Q, h are extended to [−L, 0] to make these even, odd, and even,
respectively. The profiles a,Q, h are shown in figure (3) wherein Q is extended as an odd
function and thus a, h are even. The boundary behavior of h is as in example 2.

Exercise. Example 3 can be extended to allow more control of the accumulation
profile. In particular, in example 3 the accumulation has a strong peak at x = 0 and this
is avoidable. Show that if

Q(x) = α
(
β sign(x)|x|j/3 + γ(L− x)1/3 − 1

)3

for 0 < j < 3 then the surface h(x) can be found by the method described above, and
that the corresponding accumulation a satisfies a(x) ∼ xj−1 as x → 0. For example, the
solution with j = 2 has zero accumulation at x = 0.

Radially–symmetric

We are ultimately interested in three spatial dimension ice sheets so we consider a cir-
cular ice sheet and construct the exact solution to the steady isothermal problem analogous
to that in example 3. First, recall that if f = f(r) then ∇f = f ′r̂ and ∇ · (f r̂) = 1

r
(r f)′,

where r̂ is the standard unit radial vector field on the plane R2.

1By definition, f(x) ∼ g(x) as x → a if f(x)/g(x) → C > 0 as x → a.
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x=−L x=L

0

h(x)
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Q(x)

Figure 3. An exact, analytical ice sheet solution with smooth functions a
and Q (n = 3).

Suppose a,Q, h are radial functions. The steady, radially–symmetric shallow ice equa-
tion is a = 1

r
(rQ)′ along with Γ

n+2
hn+2(−h′)n = Q if h′ ≤ 0 for r > 0. It follows that

(4) h(r)2+2/n = h
2+2/n
0 − C1

∫ r

0

(
1

ρ

∫ ρ

0

ρ′a(ρ′) dρ′
)1/n

dρ

where C1 = (2 + 2/n)
(

n+2
Γ

)1/n
and h0 = h(0) as before.

Thus we find an analytical solution whenever the (1/n)th power of Q(r) is integrable.

Example 4. Suppose n > 1 and seek Q of the form

Q(r) = α
(
βr1/n + γ(L− r)1/n − 1

)n
, r > 0,

so that Q ∼ r for r near zero and Q ∼ L − r for r near L. If r = 0 is an ice maximum
and if r = L is the edge of the sheet, that is, if Q(0) = 0 and Q(L) = 0, then γ = L1/n and
β = L1/n respectively. Thus Q(r) = α

(
( r

L
)1/n + (1− r

L
)1/n − 1

)n
. From (4) above,

h(r)2+2/n = h
2+2/n
0 − C1

∫ r

0

α1/n
(
(
ρ

L
)1/n + (1− ρ

L
)1/n − 1

)
dρ

= h
2+2/n
0 − C1α

1/nL

1 + 1/n

[
(
r

L
)1+1/n − (1− r

L
)1+1/n + 1− (1 + 1/n)]

r

L

]
.

If h(L) = 0 then (1 + 1/n)h
2+2/n
0 = C1α

1/nL(1− 1/n) so

(5) h(r) = h0

[
1− n

n− 1

(
(
r

L
)1+1/n − (1− r

L
)1+1/n + 1− (1 + 1/n)

r

L

)]n/(2n+2)

.
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Figure 4. An exact radially–symmetric ice sheet solution for n = 1.8 and
Q(r) ∼ ((r/L)1/n + (1 − r/L)1/n − 1)n. Note a and Q are smooth and a
decreases monotonically from the center of the sheet.

The accumulation function a corresponding to Q, h above is

a(r) =
1

r
(rQ)′ =

α

r

(
(
r

L
)1/n + (1− r

L
)1/n − 1

)n

+
α

L

(
(
r

L
)1/n + (1− r

L
)1/n − 1

)n−1 (
(
r

L
)

1
n
−1 − (1− r

L
)

1
n
−1

)
.

Figures 4, 5 show profiles of a,Q, h for r > 0 and n = 1.8, n = 4 respectively.

In particular, h has two continuous derivatives in the interior of the sheet and Q, a are
continuous everywhere. This is significant to the accuracy of numerical methods [6].

Example 1 (and its radial version) might be used to test the ability of a numerical
model to approximate the shape of an advancing ice front in an accumulation zone, though
of course in that case the ice would be building in advance of the front if the accumula-
tion/ablation function were continuous. Examples 2 has been used in numerical testing
[2].

The above examples are used in numerical tests as follows. Regard the input to a
steady–state simulation program as the act of specifying a = a(x, y). If a is one of the
examples given above then the program should, as output, produce an approximation to
the corresponding function h above. This can be tested by coding both the exact a, as
input, and the exact h for comparison to the computed output.
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Figure 5. Compare to figure 4. Here n = 4. Note nearly linear decay for
the accumulation function a.
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