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ABSTRACT 
The dynamic stability of the milling process is investigated 

through a single degree-of-freedom model by determining the 
regions where chatter (unstable) vibrations occur in the two-
parameter space of spindle speed and depth of cut. Dynamic 
systems like milling are modeled by delay-differential 
equations (DDEs) with time-periodic coefficients. A new 
approximation technique for studying the stability properties of 
such systems is presented. The approach is based on the 
properties of Chebyshev polynomials and a collocation 
representation of the solution at their extremum points, the 
Chebyshev collocation points. The stability properties are 
determined by the eigenvalues of the approximate monodromy 
matrix which maps function values at the collocation points 
from one interval to the next.  We check the results for 
convergence by varying the number of Chebyshev collocation 
points and by simulation of the transient response via the 
DDE23 MATLAB routine. The milling model used here was 
derived by Insperger et al. [14].  Here, the specific cutting force 
profiles, stability charts, and chatter frequency diagrams are 
produced for up-milling and down-milling cases for one and 
four cutting teeth and 25 to 100 % immersion levels. The 
unstable regions due to both secondary Hopf and flip (period-
doubling) bifurcations are found which agree with the previous 
results found by other techniques. An in-depth investigation in 
the vicinity of the critical immersion ratio for down-milling 
(where the average cutting force changes sign) and its 
implication for stability is presented. 

 

INTRODUCTION 
One of the most important manufacturing processes is 

the milling process. The single degree-of-freedom model of the 
milling process leads to a delay differential equation (DDE) 
with time-periodic coefficients due to the time-varying nature 
of the forces on the cutting tool teeth. Although several 
analytical methods to find the stability boundaries for DDEs 
with constant coefficients exist, the stability criteria of the 
milling system cannot be given in a closed form. An 
approximation method is needed, which approximates the 
infinite dimensional monodromy operator with a finite 
dimensional matrix. Therefore, the stability map of the milling 
process as a function of the cutting parameters can be 
approximately determined.  

Minis and Yanushevsky [1] used Fourier series 
expansions for periodic terms and determined the Fourier 
coefficients of related parametric transfer functions. Altintas 
and Budak [2] used a similar method except that they retained 
only the constant term in each Fourier series expansion of a 
periodic term. Davies et al. [3] and Zhao and Balachandran [4] 
examined how the periodic motions lost stability during partial 
immersion milling operations.  Davies et al. [5] presented 
experimental results for milling operations with long, slender 
endmills, which indicate that the consideration of regenerative 
effects alone may not be sufficient to explain loss of stability of 
periodic motions for certain partial immersion operations.  
Davies et al. [6] analytically showed the existence of period-
doubling instability lobes along with the traditional Hopf 
instability lobes in machining.  The results were confirmed 



 2 Copyright © #### by ASME 

independently by Corpus and Endres [7], and by Insperger and 
Stepan [8,9]. These methods are not restricted to infinitesimal 
times in the cut. Bayly et al. [10,11] extended the previous 
approaches by the use of time finite element analysis.  This 
approach also led to stability analysis of a discrete map, but the 
requirement of small time in the cut was relaxed. Analytical 
and experimental results were obtained for a 1-DOF system.  
Most of the stability results obtained by using the above 
mentioned approximation methods and the methods used by the 
researchers agree with each other.  

Insperger et al. [12] also performed a frequency 
analysis to obtain the stability conditions of time-periodic 
DDEs from which they discovered that chatter frequencies 
(secondary Hopf bifurcation and period doubling bifurcation) 
occur at the stability boundaries. They also analyzed the 
stability conditions of up- and down-milling operations [13,14] 
using the semi-discretization method [15] and the temporal 
finite element method. The study was restricted to a 1-DOF 
milling model that has the cutting tool carrying a single flute.  
Bayly et al. [16] extended the previous work to a two degree-
of-freedom model. 

The present work represents the implementation of a 
new approximation technique based on Chebyshev collocation. 
It solves the time periodic linear DDEs with multiple integer 
delays and piecewise smooth coefficients [17]. This method 
evolved from the methods developed by Sinha and Wu [18] to 
solve periodic ODEs using the Chebyshev polynomial 
approximation and by Butcher et al. [19] to obtain the 
monodromy matrix for time-periodic DDEs with smooth 
coefficients by Chebyshev polynomial expansion of the 
solution. The collocation method is shown in [17] to be 
spectrally accurate to initial value problems. It gives an 
approximation to the compact monodromy operator of the 
DDE, whose eigenvalues converge spectrally to the exact 
Floquet multipliers. The method generalizes and extends to the 
periodic coefficients case the linear multi-step methods and 
pseudospectral techniques introduced in [20,21], and leads to 
exponentially fast convergence about the Floquet multipliers.  
It is flexible for systems with multiple degrees of freedom and 
it produces stability charts with high speed and accuracy in a 
given parameter range. In this work, stability charts and 
frequency diagrams are produced for up-milling and down-
milling cases of several cutting teeth and 25 to 100 % 
immersion levels using the Chebyshev collocation method. The 
unstable regions due to both secondary Hopf and flip 
bifurcations are found which agree with the results found by 
other techniques in the literature. An investigation in the 
vicinity of the critical immersion ratio for down-milling (where 
the average cutting force changes from negative to positive) 
and its implication for stability is presented.  

MECHANICAL MODEL OF MILLING 
 

We use the same single degree-of-freedom milling 
model as in [14], to which the reader is referred for additional 

details in the derivation.  The tool is assumed to be flexible in 
the feed direction only. A summation of forces acting on the 
tool in that direction produces the equation of motion  
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where m is the modal mass, ζ  is the damping ratio, nω  is the 

natural angular frequency, and ( )F t  is the total cutting force 
in the feed direction on all engaged cutting teeth.  The force on 
the p th  tooth is given by            

( ) ( )( ( ) cos ( ) ( ) sin ( ))
p p tp p np p

F t g t F t t F t tθ θ= − −
 (2) 
where ( )pg t  acts as a switching function. It is equal to one if 

the p th  tooth is active and zero if it is not cutting. pθ (t) is the 

cutter angle of the pth tooth as it rotates.  The cutting force 
components are the product of the tangential and normal 
linearized cutting coefficients tK  and nK , respectively, the 

nominal depth of cut b, and the chip width pw (t) as 

       ( ) ( ),
tp t p

F t K bw t= ( ) ( )
np n p

F t K bw t=                  (3)  
where   

   ( ) sin ( ) [ ( ) ( )] sin ( )
p p p

w t f t x t x t tθ τ θ= + − −  (4) 
depends on the feed per tooth f , the current and delayed 
position of the tool, and pθ (t).  Here, 60 / Nτ = Ω [s] is the 

tooth pass period, Ω  is the spindle speed given in rpm, and N 
is the number of teeth. 

A summation over the total number N of cutting teeth, 
and the substitution of equations (3-4) into equation (2) yields  
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where  
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 is the τ –periodic specific cutting force variation, 

0
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and the angular position of the tool is 
( ) (2 / 60) 2 / ,p t t p Nθ π π= Ω +  where Ω  is given in rpm. 

 A solution to equation (5) is assumed of the form 
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 ( ) ( ) ( )
p

x t x t tξ= +                                                            (8)                                            

where ( ) ( )p px t x t τ= +  is the unperturbed τ -periodic 

motion, and ( )tξ  is the perturbation which vanishes when no 
regenerative chatter vibrations are present. Substitution of 
equation (8) into equation (5) yields 
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(9) 
This is the linear variational DDE model used in this paper 
(and in [14]).  Stability of the ( )tξ =0 solution in equation (9) 

implies the stability of the ideal (chatter-free) motion ( )px t . 

 
UP-MILLING AND DOWN-MILLING 

 The relationship between the direction of tool rotation 
and the feed defines two types of partial immersion milling 
operations: the up-milling and down-milling operations. Both 
operations work in a similar way except that the rotation of the 
cutting tool is in the opposite direction. However the dynamics 
and stability properties are different. Partial immersion milling 
operations are characterized by the number N of teeth and the 
radial immersion ratio ‘a/D’, where a is the radial depth of cut, 
and D the diameter of the tool.  We can differentiate up-milling 
from down-milling by knowing the angles of contact made by a 
particular tooth inside the workpiece. The specific cutting force 
variation h(t) in equation (6) depends on the screen function for 

the pth tooth which is defined as ( )pg t = 1 if 
enterθ  < pθ (t) 

< exitθ  and ( )pg t = 0 otherwise. The entry and exit angles 

can be found from the figure below [14] as 
enterθ = 0 and 

exitθ = 1cos−  (1-2a/D) for up-milling, while for down-milling 

the angles are 
enterθ = 1cos−  (2a/D-1) and exitθ = π . 

 
The specific cutting force for up- and down-milling for 
immersion ratios of 0.25, 0.5, 0.75, and 1.0 are shown in 
Figures 1-4 for the cases of one and four cutting teeth. 
 While the stability charts for up- and down-milling for 
a single cutting tooth were presented in [14], we have produced 

charts for 1,2,4, and 8 teeth.  Here we show up- and down-
milling results for 1 and 4 teeth for the above immersion ratios. 
CHEBYSHEV COLLOCATION APPROXIMATION 

The Chebyshev collocation approximation method 
used to solve the milling problem and obtain the stability 
diagrams is based on the properties of the Chebyshev 
polynomials. The standard formula to obtain the Chebyshev 
polynomial of degree j, which is denoted by ( )jT t  is 

            ( ) cosjT t jθ= , arccos( )tθ = , 1 1t− ≤ ≤              (10)             

The Chebyshev collocation points are unevenly spaced in the 
given domain corresponding to extreme points of the 
Chebyshev polynomial. We can visualize these points as the 
projections on the domain [-1,1] of equispaced points on the 
upper half of the unit circle as 
           cos( /( 1)),jt j mπ= −        j = 0, 1,……, m-1        (11)             

 A spectral differentiation matrix for m Chebyshev 
collocation points is obtained by interpolating a polynomial 
through the function values at the collocation points, 
differentiating that polynomial, and then evaluating the 
resulting polynomial at the collocation points.  As shown in 
[22], the  differentiation matrix D has the following form: 
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The dimension of D is m m×  where m is the number of 
Chebyshev points.  If I n  is the n x n identity, then we also 
define a dimension mn x mn differentiation matrix using the 
Kronecker product operation as 

       
� ,nD D I= ⊗

^^

                                              (13)               
Now consider a linear, time periodic system of n 

DDEs with fixed delay 0τ > , 
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               ( ) ( ) ( ) ( ) ( )x t A t x t B t x t τ= + −&                                                         

              ( ) ( )x t tφ= ,            0 0t t tτ− ≤ ≤             (14) 
 

where ( )x t  is a 1n×  state vector, 
( ) ( )A t A t T= + and ( ) ( )B t B t T= +  are n n×  periodic 

matrices, ( )tφ  is an 1n×  initial vector function in the interval 
[ , 0]τ− .  Assuming the delay is equal to the period ( Tτ = , 
which is not a necessary assumption for the procedure), if 
Φ (t) is the fundamental solution matrix to the non-delay part 

of (14) and Ψ (t) is the fundamental solution matrix for the 

adjoint system such that 
1( ) ( )Tt t−Φ = Ψ , the infinite-

dimensional monodromy operator for a periodic DDE system 
can be defined as [23] 

         
0

( )( ) ( ){ ( ) ( ) ( ) ( ) }
t

T

Ux t t x s B s x s dsτ= Φ + Ψ∫  (15) 

which maps continuous functions from the interval [0,T] back 

to the same interval, i.e., : [0, ] [0, ].U C T C T→  If the 
maximum of the modulus of the eigenvalues (Floquet 
multipliers) of the monodromy operator U is less than 1, then 
the system is said to be stable. It is impossible to numerically 
find all the eigenvalues of the infinite dimensional U matrix. 
However, we use the Chebyshev collocation approximation 
method to reduce the size of the U matrix to a finite dimension, 
whose spectral radius decides the stability. Because of the 
compactness of the U matrix, all of the neglected eigenvalues 
are guaranteed to be clustered about the origin and thus do not 
influence the stability. 

Solving the numerical approximation  of equation (14) 
using the Chebyshev collocation method will give an 
approximation to the monodromy operator in equation (15) 
[17]. Finding the approximate solution by knowing the function 
values at different points in a given interval is the basic idea of 
collocation.   First, let  { jφ } and { jv }, j=1,…,m be sets of 
function values at shifted Chebyshev collocation points in the 
interval [0,T] where the points are ordered right to left as in 
equation (11) and [22]. The { jφ } are given values of the initial 

function ( )tφ in the normalized interval t∈[-T,0] and the 

{ jv } are values of the solution ( )x t to be found in the 
normalized interval t∈[0,T].  Note that the matching condition 
at t=0 requires that 1φ = mv .  Then by the method of steps we 

can obtain the { jv } as { jv } = U{ jφ } for a finite matrix U 
which approximates the monodromy operator.   

To obtain U, we write equation (14) in the collocation 
approximation form as 

^ ^ ^{ } { } { }j A j B jD v M v M φ= +                                             (16) 

The matrix ^D  is obtained from �D  by modifying the last n 
rows as [0n  0n  0n  … In ] where 0n and In are n x n null and 
identity matrices and then scaling to account for the shift 
[ ]1,1 [0, ]T− →  by multiplying the resulting matrix by 2/T.  

The patterns of the ^
AM , ^

BM  matrices are 
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where ( )iA t  means A(t) evaluated at the thi  shifted 
collocation point. Here the hat ^ next to the operators refers to 
the modification of the last n rows to account for the n 
matching conditions between successive intervals (including 
the modification to ^D  above).  Therefore, we get the 
approximation to the monodromy operator as  

U=
^ 1

^ ^ ^
A BM MD

−

−⎡ ⎤
⎣ ⎦

^
^             (19)  

If m is the number of collocation points and n is the size of the 
DDE system, then the size of the U matrix will be mn ×  mn. 
We can achieve higher accuracy by increasing the value of m.  
In [17] it is shown in an a posteriori sense that if A(t) and B(t) 
are sufficiently smooth then the approximate eigenvalues 
(Floquet multipliers) of U converge to the exact eigenvalues of 
U in equation (15) at an exponential rate.  
 
STABILITY CHARTS AND FREQUENCY DIAGRAMS                    

Stability charts are determined by using the 
Chebyshev collocation method to analyze the monodromy 
operator as it depends on parameters.  We will consider a series 
of milling processes like up-milling and down-milling, varying 
immersion ratios, and varying number of cutting teeth.  Since 
the specific cutting force variation h(t) is independent of the 
spindle speed of the tool, we assume the spindle speed Ω  is 
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3300 rpm to plot h(t). Experimentally identified parameters 
given in [15] are used to construct the stability charts: m = 
2.573 kg, 0.0032,ζ =  920.02nω =  Hz, 82.0 10nK = ×  

N/m 2  and 85.5 10tK = ×  N/m 2 . Stability charts are 

constructed with parameters being the spindle speed Ω  
(ranging from 2000 to 25000 rpm) and the chip thickness b 
(ranging from 0 to 5 mm). MATLAB software is used for 
producing the stability chart using the collocation method. The 
dimension of the monodromy operator for all cases is 80 80× . 
However it is possible to produce the same stability chart by 
taking a lower dimensional (e.g. 40 40× ) monodromy matrix 
for most of the cases (except for the critical immersion ratio 
cases). We chose 300×300 grid points in the parameter plane. 
The computational specifications used to run the MATLAB 
programs are: Intel Pentium IV, processor speed 1.5 GHz, 
RAM 1.02 GB. It takes approximately 90-120 minutes to 
obtain each stability diagram.  

The stability analysis is based on the determination of 
the relevant characteristic multiplier using the collocation 
method. We use bifurcation theory to explain the type of 
instability. For the µ =1 (fold bifurcation) case, it can be 
shown that this bifurcation cannot occur in the milling 
equation.  For secondary Hopf bifurcation, |µ |=1 and iλ ω=  
is purely imaginary where ω =Im(lnµ )/τ . In this case, the 
chatter frequencies are determined from ω , which is also the 
positive angle made by the characteristic multiplier in the 
complex plane. Since the complex exponential function is 
periodic, the logarithmic function is not unique in the plane of 
complex numbers. This raises the possibility of multiple chatter 
frequencies. These chatter frequencies can be observed while 
doing experiments on the milling machines. These frequencies 
can be measurable and comparable with the theoretical results. 

Chatter frequency diagrams are constructed in Figures 
(1-4) by considering the characteristic multipliers obtained at 
the stability boundary and using the formulation in [12].  
However, if the characteristic multipliers are found using the 
collocation method, then the equations for Hopf frequencies in 
[12] must be altered by dividing by the factorτ due to the 
normalization used in the collocation method.  Therefore, the 
Hopf frequencies are given as 

( )
2 60

H

N
f n

ω

π

Ω
= ± +

[Hz],   n = …,-1, 0, 1,…               

(20)  
where τ  is given in sec. and Ω  in rpm. For the period 
doubling case (µ  = -1), the characteristic exponent is 

(ln( 1)) /λ τ= −  or we substitute angle ω  = π  into (20) as 

          
1

( )
2 60

PD

N
f n

Ω
= +  [Hz],  n = …,-1, 0, 1,…         (21)               

We check the response at some of the parameter points 
in the stability charts using the MATLAB routine DDE23 [24]. 
If the solution of the given system decays as time goes to 
infinity, then the system is said to be stable at the given 
parameter points; otherwise the system is unstable. Using this 
concept we pick three parameter points from the stability charts 
shown in Figures 1 and 4 and, using DDE23, we check whether 
those parameter points are stable or unstable. The results shown 
in Figures 5-6 agree with the stability charts obtained by the 
collocation method (see the locations of characteristic 
multipliers obtained by using the collocation method). 
 
DISCUSSION 

For some cases in the milling process, we can notice a 
drastic change in the stability charts just by changing the 
immersion ratio. Consider the stability charts of the down 
milling single tooth case shown in Figure 2, where the order of 
Hopf bifurcation stability lobe (‘U’ shaped) and flip bifurcation 
stability lobe (‘V’ shaped) is switched by changing the 
immersion ratio. Stability charts drawn for different immersion 
ratios between 0.62 to 0.71are shown in Figure 7, to illustrate 
what really happens to the stability diagrams between these 
immersion ratios. We can see that the milling case with 
immersion ratios 0.63 to 0.68 has larger stability region 
compared to any other milling case for the given spindle speed 
Ω  and is fully stable for the spindle speed range of 9000 to 
16000 r.p.m. We can also notice that the immersion ratios 
above 0.663 have a positive average specific cutting force 
variation h(t) value, whereas for lower immersion ratios, the 
value is negative. This is one of the reasons explaining the 
drastic change in the stability conditions near the critical 
immersion ratio. For the negative depth of cut case, with 
immersion ratios less than the critical immersion ratio, the 
corresponding stability diagrams reveal information about 
obtaining the stability region for positive chip thickness by 
knowing the unstable region for negative chip thickness. Note 
that the above theory is applicable to only Hopf type stability 
lobes (i.e., the flip type lobes do not change drastically). 

 In Figures 1-4, the similarities and differences 
between upmilling and down milling can be clearly observed. 
The flip (period doubling) lobes, for example, vary in size but 
are located more or less at the same spindle speed range 
(around 16000 to 22000 r.p.m). This is not true for Hopf lobes. 
For low immersion upmilling, the Hopf lobes are located to the 
left of flip lobes, while the downmilling cases show this special 
duality or mirror symmetry for immersion ratios with 0.5 or 
less. An explanation for these interesting results is as follows: 
The flip lobes are related to the impact effects of entering and 
leaving the workpiece material. While these are more or less 
independent of the sense (up or downmilling) of the milling, 
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this is not the case for the Hopf lobes. These flip lobes occur 
for lower immersions and lower number of cutting teeth cases. 
High speed milling operations can be stabilized simply by 
changing to downmilling from upmilling at certain wide high 
speed parameter domains (9000 to 16000 rpm). This is where 
the critical immersion ratio range of 0.63 to 0.68 for down-
milling is so important, because it has a higher stability region 
than any other case.  

For the multiple cutting teeth upmilling case (Figure 3), the 
presence of idle time (i.e., if h(t) is zero) leads to flip lobes in 
the stability chart. According to the assumption made earlier, 
that any thp  tooth follows the same cutting profile as the first 
cutting tooth, leads us to the conclusion that for all even 
numbers of teeth with full immersion (except N = 2), we will 
have constant specific cutting force variation that makes this 
milling case look similar to the turning operation. Also the 
stability charts for milling and turning cases look the same. The 
DDE23 results (Figures 5-6) and Chebyshev collocation results 
agree with each other. For the specific cutting force variation 
(Figures 1-4), the approximation of h(t) using Chebyshev 
points gives reasonably good results with similar relative errors 
compared to the other methods which use equispaced points. 
The number of Chebyshev points should be large enough to get 
reasonably accurate stability charts.  Thus, also the Chebyshev 
collocation method is exponentially convergent for smooth 
coefficients [17], the presence of discontinuities in the specific 
cutting force variation leads to a higher minimum number of 
points for the milling problem than what would normally be 
expected.  (The suggested minimum number for m is 20, while 
near the critical immersion ratio in Figure 7 we use m = 80.) 
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Figure 1. Up-milling, number of cutting teeth N = 1, specific cutting force variation diagrams, frequency diagrams and stability 
diagrams for varying immersion ratios a/D=0.25, 0.5, 0.75, 1 
 

 
Figure 2. Down-milling, number of cutting teeth N = 1, specific cutting force variation diagrams, frequency diagrams and stability 
diagrams for varying immersion ratios a/D=0.25, 0.5, 0.75, 1 
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Figure 3. Up-milling, number of cutting teeth N = 4, specific cutting force variation diagrams, frequency diagrams and stability 
diagrams for varying immersion ratios a/D=0.25, 0.5, 0.75, 1 
 

 
Figure 4. Down-milling, number of cutting teeth N = 4, specific cutting force variation diagrams, frequency diagrams and stability 
diagrams for varying immersion ratios a/D=0.25, 0.5, 0.75, 1 
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Figure 5. DDE23 results for the parameter points A, B and C picked from the stability diagram of up-milling  
with N = 1, a/D = 1 and collocation results for finding the locations of characteristic multipliers 
 
 

 
 
Figure 6. DDE23 results for the parameter points A, B and C picked from the stability diagram of down-milling  
with N = 4, a/D = 0.25 and collocation results for finding the locations of characteristic multipliers 
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Figure 7. Critical immersion ratios for down-milling, N = 1, collocation points m = 80, parameter plane 300×300 grid points 

 


