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KKT conditions for general nonlinear optimization

These short notes are about the most general problem we have ever considered in
this course, namely this nonlinear constrained optimization problem over x ∈ Rn:

minimize f(x)

subject to gi(x) = 0, i = 1, . . . , ℓ

hi(x) ≥ 0, i = 1, . . . ,m

These notes supplement section 14.5 of the textbook,1 where the KKT conditions are
given but only for equality or inequality constraints separately.

Define g(x) to be the vector formed from g1(x), . . . , gℓ(x), and h(x) from h1(x), . . . ,

hm(x). In these terms we can write

(1)
minimize f(x)

subject to g(x) = 0

h(x) ≥ 0

We will need two definitions from section 14.5. All functions f, gi, hi are assumed
to be as differentiable as needed.

Definition. (i) For a feasible point x, let h̃(x) be the vector of length m̃ formed from the
active constraints hi(x) at x, i.e. for which hi(x) = 0.
(ii) A feasible point x∗ is a regular point of the constraints if the matrix[

∇g1(x∗) . . . ∇gℓ(x∗) ∇h̃1(x∗) . . . ∇h̃m̃(x∗)
]

has linearly independent columns. This matrix has n rows and ℓ+ m̃ columns.

In definition (ii), note that the gradient of a scalar-valued function is a column vector.
Conceptually, at a regular point each active constraint provides new information;

there are no redundancies. The inactive inequality constraints are ignored in this
definition. The definition of a regular point is called the linearly independent constraint
qualification (LIQC) in some books.

The Lagrangian for problem (1) is

L(x, λ, µ) = f(x)−
ℓ∑

i=1

λigi(x)−
m∑
j=1

µjhj(x)

= f(x)− λ⊤g(x)− µ⊤h(x)

where λ ∈ Rℓ and µ ∈ Rm are column vectors. In the second form we regard g(x) and
h(x) as column vectors. Note that the full h(x), not h̃(x), is used here.

1Griva, Nash, and Sofer, Linear and Nonlinear Optimization, 2nd ed., SIAM Press 2009.
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The following KKT theorem2 states the first-order necessary conditions.

Theorem (Karush-Kuhn-Tucker, 1939 & 1951). Suppose x∗ is a local minimizer of problem
(1), and assume it is a regular point of the constraints. Then there exist vectors λ∗ ∈ Rℓ and
µ∗ ∈ Rm so that

∇xL(x∗, λ∗, µ∗) = 0 stationarity

g(x∗) = 0 primal feasibility: equality constraints

h(x∗) ≥ 0 primal feasibility: inequality constraints

µ∗ ≥ 0 dual feasibility

µ⊤
∗ h(x∗) = 0 complementary slackness

The stationarity condition can be expanded:

∇f(x∗) = ∇g(x∗)λ∗ +∇h(x∗)µ∗

= (λ∗)1∇g1(x∗) + · · ·+ (λ∗)ℓ∇gℓ(x∗)

+ (µ∗)1∇h1(x∗) + · · ·+ (µ∗)m∇hm(x∗)

This says that the gradient of f at the solution x∗ can be written as a linear combi-
nation of the gradients of the constraints. Some of the inequality constraints can be
inactive, however, so complementary slackness says that the corresponding multi-
pliers µi are zero. Thus, in fact, the ∇f(x∗) is a linear combination of the gradients
of the active constraints. The fact that x∗ is a regular point implies that the linear
combination is unique, thus that the Lagrange multipliers λ∗, µ∗ are unique.

It will be helpful to see one example with both equality and inequality constraints.
The example has two inequality constraints, so that we can see complementary slack-
ness in action.

Example.
minimize f(x) = 1

2
(x2

1 + x2
2)

subject to x1 + x2 = 1

x1 ≥ 1

x2 ≥ −1

Here g1(x) = x1 + x2 − 1, h1(x) = x1 − 1, and h2(x) = x2 + 1.
The feasible set is a closed line segment between the points (1, 0) and (2,−1) in

the x1, x2 plane. The objective is essentially the square of the distance to the origin.
Thus, in this simple example problem, x∗ = (1, 0) is the solution. At this point the
first inequality constraint is active while the second is not.

The Lagrangian is

L(x, λ, µ) = 1

2

(
x2
1 + x2

2

)
− λ(x1 + x2 − 1)− µ1(x1 − 1)− µ2(x2 + 1),

2en.wikipedia.org/wiki/Karush-Kuhn-Tucker conditions

https://en.wikipedia.org/wiki/Karush-Kuhn-Tucker_conditions
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with λ ∈ R1 and µ ∈ R2. The KKT theorem gives 8 scalar facts that must be true at
the solution:

x1 − λ1 − µ1 = 0 stationarity

x2 − λ1 − µ2 = 0

x1 + x2 − 1 = 0 primal feasibility: equality constraint

x1 − 1 ≥ 0 primal feasibility: inequality constraints

x2 + 1 ≥ 0

µ1 ≥ 0 dual feasibility

µ2 ≥ 0

µ1(x1 − 1) + µ2(x2 + 1) = 0 complementary slackness

Since x = (1, 0) is the solution, and only the first inequality constraint is active, it
follows that µ2 = 0. The complementary slackness condition is µ1(x1 − 1) = 0, so
x1 = 1. (We will check that µ1 > 0 at the solution, so this logic is correct.) The system
of remaining equations is now

1− λ1 − µ1 = 0

x2 − λ1 = 0

x2 = 0

This is a set of 3 equations for x2, λ1, µ1. It is easy to see x2 = 0, λ1 = 0, and µ1 = 1.
That is,

(x1, x2, λ1, µ1, µ2) = (1, 0, 0, 1, 0).

It is easy to check that with these values all 8 KKT conditions hold. In particular,
complementary slackness says 1 · 0 + 0 · 1 = 0, and strict complementarity holds.


