
Math 661 Optimization (Bueler) 26 August 2024

5 example optimization problems

I have several goals in starting this course with examples:

• It shows how optimization comes from real-world applications.
• It allows you to discover for yourself some basic theoretical/numerical ideas.
• These examples help you practice and learn some programming.1

The textbook, namely Griva, Nash, and Sofer, Linear and Nonlinear Optimization, 2nd ed., SIAM
Press 2009, also provides many examples; see Chapter 1. In any case, one cannot understand
theory and algorithms without some understanding of applications. All optimization experts
have learned from such examples.

Each example has a name written in parentheses. I will also use this in naming my MAT-
LAB/OCTAVE code in the solutions to Assignment # 1, e.g. calc.m for the first example.

Following the ideas in Chapter 2.1 in the textbook, each example identifies a feasible set S and
an objective function f(x), which writes it in this standard form:

min
x∈S

f(x).

This document does not address how to solve these example problems! That will be done by
you; see Assignment #1 for specific expectations. When you solve one of these problems your
method may be, and often will be, “brute force” and inefficient. That is just fine for now! The
rest of the course will make more sense if you see some brute force approaches, before getting
more elegant algorithms.

1. (calc) Let

f(x) =
(
x2 + sinx

)2 − 10

(
cos(5x) +

3

2
x

)
.

Compute the minimum of f on the interval S = [0, 2]:

min
x∈[0,2]

f(x)

You saw such problems in Calculus I, but this one is a bit harder to do by hand. It
benefits from computer visualization, and, because S is one-dimensional, you may easily
plot f(x) on S. From such a plot you can get close to the solution just by looking.

2. (fit) Consider the following 11 data points which are plotted below:

x 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000
y 4.914 3.666 2.289 1.655 1.029 0.739 0.393 0.090 -0.197 -0.721 -0.971

1In this course you may use any language you want. I will provide demos, examples, and solutions in MAT-
LAB/OCTAVE. My other recommended languages are PYTHON and JULIA.

2

0 0.2 0.4 0.6 0.8 1
-1

0

1

2

3

4

5

x

y

Suppose we believe that this data can be fit by a function of the form

g(x) = c1 + c2x+ c3e
−3x.

Let’s decide that the meaning of “fit” is that the sum of the squares of the misfits should
be as small as possible. Then the problem is

min
c∈R3

f(c)

where we define the objective function

f(c) =
1

2

11∑
j=1

(g(xj)− yj)
2 =

1

2

11∑
j=1

(
c1 + c2xj + c3e

−3xj − yj
)2

.

(The overall factor of 1/2 is merely a convenience when differentiating.)
Note S = R3, because here there are no constraints on the coefficients ci. Also note that

we are not finding xj or yj values in the minimization process! We are finding c1, c2, c3.
The data values (xj , yj) do, however, determine the objective function f .

3. (salmon) Ed and Vera caught 21 salmon. Of these, x1 will be eaten fresh, which re-
quires 2 time units per fish. Then x2 will be vacuum-packed and frozen (3 time units per
fish) and another x3 will be smoked and vacuum-packed (4 time units per fish). Thus the
total amount of processing time is f(x) = 2x1+3x2+4x3. However, at most 2 fish can be
eaten fresh before they go bad, at most 10 fish can be smoked in the smoker time avail-
able, and at least 4 fish must be smoked because they’ll be mailed unfrozen to relatives.
Find x1, x2, x3 to minimize the total processing time.

This is a constrained minimization problem wherein xi are numbers of fish, which
must be non-negative, and the objective function is the total processing time:

min f(x) = 2x1 + 3x2 + 4x3 subject to

x1 + x2 + x3 = 21

0 ≤ x1 ≤ 2

0 ≤ x2
4 ≤ x3 ≤ 10

The feasible set S ⊂ R3 includes all the constraints:

S =
{
x ∈ R3

∣∣x1 + x2 + x3 = 21, 0 ≤ x1 ≤ 2, 0 ≤ x2, and 4 ≤ x3 ≤ 10
}
.

The objective function and the constraint functions (e.g. g1(x) = x1 + x2 + x3, g2(x) = x1,
. . .) are linear functions, so this is a linear programming problem.

3

4. (tsp) Jill sells amazing widgets that help you learn math. To sell these devices she
plans to visit six cities A, F, J, N, S, W by starting and ending at city F. Some cities have
connecting flights and some do not; the one-way costs of the various flights are shown
below in a graph with costs (weights) on each connection (edge). Except for starting and
ending at F, it is clear that she should visit each city exactly once.

A

F

J

N

S

W
100

100

150

250

150

150

200

300
250

200

200

200

This is an example of the famous traveling salesperson problem. Each possible itinerary
is expressible as a seven-letter string like “FWJSANF”. If x denotes such a feasible string
then we may define the objective function f(x) to be the cost of that itinerary; thus f(x) is
defined using the edge weights. Even finding a feasible itinerary, a Hamiltonian cycle, for
a big-enough graph, is generally nontrivial. One may, however, add-in all missing edges
with large weights so that any itinerary x is feasible and has a well-defined cost f(x).

The problem could be written in standard form

min
S

f(x).

where S = {x |x is a feasible itinerary}. However, there is no easy way to describe S by
inequalities and equalities as as subset of some Euclidean space Rn as above.

In any case, this is a discrete optimization problem. That is, S is a finite set of feasible
itineraries. Mostly we will consider continuous optimization problems in this course, not
discrete ones.

5. (glacier) The shape of a glacier on flat bedrock is approximately given by the solu-
tion to a constrained optimization problem. The mathematical form of this problem must
express three ideas: (i) glaciers are created where snowfall exceeds melt, (ii) the glacier
shape is influenced by the downhill flow of the ice, and (iii) the thickness of a glacier is a
nonnegative function.

The optimal solution to the minimization problem is itself a function u(x) giving the
thickness at each location. The objective function f [u] takes such a function u(x) as input
and produces a single real number. It is common to call such functions, which take other
functions as inputs, functionals.

The feasible set in this specific problem is a set of functions defined on an interval:

S =
{
u(x)

∣∣u(x) ≥ 0 is a differentiable function on [−100, 100] km
}
.

4

In contrast to all the above examples, an element of the feasible set S is not a finite list
(vector) of numbers, it is a function itself. Therefore this calculus of variations problem is
infinite-dimensional.

In this specific problem I will make up a source function which defines the rate of total
snowfall or melt in a year, the mass balance in glaciologist language:

m(x) =

−3 + 6

90(x+ 70), −70 ≤ x ≤ 20,

3− 6
50(x− 20), 20 ≤ x ≤ 70,

−3, otherwise.

The units of m(x) are meters per year. This function is graphed below. Note that it is
only snowing where m(x) is positive; everywhere else it is melting.

-100 -50 0 50 100
-3

-2

-1

0

1

2

3

x (km)

m
(x

)
 (

m
et

er
s

pe
r

ye
ar

)

The objective functional is an integral defined using the data m(x):

f [u] =

∫ 100

−100

µ

4

(
u′(x)

)4 −m(x)u(x) dx

Based on other physical constants related to the slow flow of ice (not shown) we set
µ = 5× 10−14. The glacier shape is derived from the solution of the problem

min
S

f [u].

Once u(x) is computed we raise it to a power to get the actual ice thickness H(x), mea-
sured in meters, of the glacier:

H(x) = u(x)3/8.

Because this problem uses an infinite-dimensional feasible set S, computer solutions
require discretization. The objective functional can only be evaluated approximately. (In
fact, storing arbitrary functions of x on an interval is not possible.) The easiest way to
discretize is to put a grid on the interval I = [−100, 100] and only consider functions
which are piecewise-linear between the points of this grid. In that case the derivative
u′(x) in the integral for f [u] is computed by the difference quotient which gives the slope
of the line segment between the points. Evidently, we want the grid to be as fine as prac-
tical given our tools, that is, given the available optimization algorithms and computer
resources.

