Math 661 Optimization (Bueler)

(i.e. "solutio 9 September 2022 Not to be turned in! Versian

Worksheet: Convexity proofs

Over the course of the semester there will be proofs on various topics, but also many concrete calculations to do and programs to write. For now, a bit of practice with the logic of convexity, and more examples of how to write proofs, might make things easier. I won't expect any particular proof style when grading homework and exams, but it might give confidence to have a target style.

A. (Same as Exercise 3.4 in Section 2.3.) Prove that a function f is concave if and only if -f is convex.

Statement. Suppose f is a function on a convex set
S and g=-f. Then f is concave if and only
if g is convex.
Proof. (=>) Suppose fis concave. Let x,y ∈ S
and dE[0, 13. Then
$g(\alpha x + (1 - \alpha)y) = -f(\alpha x + (1 - \alpha)y)$
$\geq -(\alpha f(x)+(r\alpha)f(y))$
$= \alpha g(x) + (1-\alpha) g(y)$, So g is concare. (Note the minus revenues the
(hequality.)
Suppose g=-f is concave. Let x,y ES
and $\alpha \in [0,1]$. Then
$f(\alpha x + (1-\alpha)y) = -g(\alpha x + (1-\alpha)y)$
$\leq -(\alpha q(x) + (1 - \alpha) q(y)) = \alpha f(x) + (1 - \alpha) f(y)$
So f is convex.

B. (Compare Exercise 3.13 in Section 2.3.) Prove that if *g* is concave then $S = \{x : g(x) \ge 0\}$ is convex.

Statement. Suppose
$$g:\mathbb{R} \to \mathbb{R}$$
 is concave. Then
 $S = \{x: g(x) \ge 0\}$ is convex.
Proof. Let $x, y \in S$ and $\alpha \in [0,1]$. By
definition of $S, g(x) \ge 0$ and $g(y) \ge 0$. Thus
 $g(\alpha x + (1 - \alpha)y) \stackrel{\leq}{\Longrightarrow} \alpha g(x) + (1 - \alpha)g(y)$
 $\stackrel{\otimes}{\Longrightarrow} \alpha \cdot 0 + (1 - \alpha) \cdot 0 = 0$.
(Step \bigotimes is because g is concave. Step
 \bigoplus is because $\alpha \ge 0$ and $(1 - \alpha) \ge 0$.)
Thus $Z = \alpha x + (1 - \alpha)y$ is in S because
 $g(z) \ge 0$.