Worksheet: Convexity proofs
Over the course of the semester there will be proofs on various topics, but also many concrete calculations to do and programs to write. For now, a bit of practice with the logic of convexity, and more examples of how to write proofs, might make things easier. I won't expect any particular proof style when grading homework and exams, but it might give confidence to have a target style.
A. (Same as Exercise 3.4 in Section 2.3.) Prove that a function f is concave if and only if $-f$ is convex.
Statement. Suppose f is a function on a convex set S and $g=-f$. Then f is concave if and only if g is convex.
Proof. \Leftrightarrow Suppose f is concave. Let $x, y \in S$ and $\alpha \in[0,1]$. Then

$$
\begin{aligned}
g(\alpha x+(1-\alpha) y) & =-f(\alpha x+(1-\alpha) y) \\
\geq & -(\alpha f(x)+(1-\alpha) f(y)) \\
& =\alpha g(x)+(1-\alpha) g(y)
\end{aligned}
$$

so g is concave. (Note the minus relines the inequality.)
$(\Leftarrow$ Suppose $g=-f$ is concave. Let $x, y \in S$
and $\alpha \in[0,1]$. Then

$$
\begin{aligned}
f(\alpha x+(1-\alpha) y) & =-g(\alpha x+(1-\alpha) y) \\
& \leq-(\alpha g(x)+(1-\alpha) g(y))=\alpha f(x)+(1-\alpha) f(y)
\end{aligned}
$$

so f is convex.
B. (Compare Exercise 3.13 in Section 2.3.) Prove that if g is concave then $S=\{x: g(x) \geq 0\}$ is convex.
Statement. Suppose $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is concave. Then $S=\{x: g(x) \geq 0\}$ is convex.
${ }^{\text {Proof. }}$ Let $x, y \in S$ and $\alpha \in[0,1]$. By definition of $S, g(x) \geq 0$ and $g(y) \geq 0$. Thus

$$
\begin{aligned}
g(\alpha x+(1-\alpha) y) & \stackrel{\otimes}{\oplus} \alpha g(x)+(1-\alpha) g(y) \\
& \stackrel{\otimes}{\underset{\sum}{\oplus}} \alpha \cdot 0+(1-\alpha) \cdot 0=0 .
\end{aligned}
$$

(Step \otimes) is because g is concave. Step (1) is because $\alpha \geq 0$ and $(1-\alpha) \geq 0$.)

Thus $z=\alpha x+(1-\alpha) y$ is in S because $g(z) \geqslant 0$.

