
Steepest descent
needs help

Ed Bueler

MATH 661 Optimization

Fall 2024

Ed Bueler (MATH 661) Steepest descent Fall 2024 1 / 14



steepest descent for unconstrained optimization

these slides are a brief introduction to a well-known topic in
unconstrained optimization: steepest descent

◦ also known as gradient descent

please read sections 12.1 and 12.2 of the textbook,1 but just ignore the
Lemmas for now; we will get back to it
codes seen in these slides are already posted at the Codes tab of the
public site

1Griva, Nash & Sofer, Linear and Nonlinear Optimization, 2nd ed., SIAM Press 2009
Ed Bueler (MATH 661) Steepest descent Fall 2024 2 / 14



the steepest descent algorithm

assume f : Rn → R has (at least) one continuous derivative
we want to solve the unconstrained problem:

min
Rn

f (x)

the steepest descent algorithm:

1. User supplies x0.

2. For k = 0, 1, 2, . . .
(i) User provides stopping criterion: If xk is optimal then stop.
(ii) Search direction is pk = −∇f (xk ).
(iii) User determines step length αk > 0.
(iii) Let xk+1 = xk + αk pk .

Ed Bueler (MATH 661) Steepest descent Fall 2024 3 / 14



steepest descent is obvious

steepest descent is an obvious interpretation of “‘General Optimization
Algorithm II” in §2.4

◦ direction is chosen as “go straight downhill”
the gradient points straight uphill

◦ but we don’t know how to use the length of ∇f (xk )
◦ so we must make a nontrivial step-length choice for αk

◦ also we need a stopping criterion
◦ and an initial iterate

any choice of steepest descent length (pk = −α∇f (xk ) and α > 0)
generates a (feasible) descent direction at xk

◦ recall: p is a descent direction at x if p⊤∇f (x) < 0

fun fact: if ∇f (xk ) ̸= 0 then the direction of pk = −∇f (xk ) solves this
optimization problem

min
∥q∥=1

q⊤∇f (xk )

Ed Bueler (MATH 661) Steepest descent Fall 2024 4 / 14



one way to choose step length: back-tracking

we will see in section 11.5 that we can prove convergence of many
unconstrained optimization algorithms as long as the step-size αk is
chosen to satisfy certain conditions

◦ this is the line search idea

for now I just need some reasonable way to choose αk

the most common way to satisfy these conditions is “back-tracking”
◦ page 378 of the textbook
◦ an implementation:

function alpha = bt(xk,pk,dfxk,f)
Dk = dfxk’ * pk; % scalar directional derivative
mu = 1.0e-4; % modest sufficient decrease
rho = 0.5; % backtracking by halving
alpha = 1.0;
while f(xk + alpha * pk) > f(xk) + mu * alpha * Dk

alpha = rho * alpha;
end

we will return to this topic, and prove remarkable Theorem 11.7

Ed Bueler (MATH 661) Steepest descent Fall 2024 5 / 14



steepest-descent with back-tracking code

here is a basic implementation of steepest-descent with back-tracking
= SDBT

it assumes that the user supplies x0 and a function f that returns both the
values f (x) and the gradient ∇f (x):

function [z, xk, k] = sdbt(f, x0, tol)

xk = x0(:);
maxiters = 10000;
for k = 1:maxiters

[fk, dfk] = f(xk); % objective and gradient
if norm(dfk) < tol

z = fk;
break % success

end
pk = - dfk(:); % steepest descent
alpha = bt(xk, pk, dfk, f); % back-tracking
xk = xk + alpha * pk;

end

Ed Bueler (MATH 661) Steepest descent Fall 2024 6 / 14



steepest-descent-back-tracking: example I

suppose f (x) = 5x2
1 + 1

2 x2
2 for x ∈ R2, an easy quadratic objective

function with global minimum at x∗ = (0,0)⊤

using the codes:
>> x0 = [2 20]’; % start far away
>> [z, xk, k] = sdbt(@easyq, x0, 1.0e-10)
z = 1.8601e-21
xk =

3.6456e-12
5.9894e-11

k = 105

this is based on a function which returns f (x) and ∇f (x):
function [fx, dfx] = easyq(x)

fx = 5 * x(1)^2 + 0.5 * x(2)^2;
dfx = [10 * x(1);

x(2)];

Ed Bueler (MATH 661) Steepest descent Fall 2024 7 / 14



steepest-descent-back-tracking: example I

recall: f (x) = 5x2
1 + 1

2 x2
2 , x0 = (2,20)⊤

result from SDBT:

is this result o.k.?

Ed Bueler (MATH 661) Steepest descent Fall 2024 8 / 14



steepest-descent-back-tracking: example II

a famously-harder problem in R2 is to minimize the Rosenbrock function:

f (x) = 100(x2 − x2
1 )

2 + (1 − x1)
2

◦ a quartic polynomial in 2 variables
◦ has a single global minimum at x∗ = (1, 1)⊤

◦ has steep “banana” shaped contours (bottom left)

at right: SDBT from x0 = (0,0)⊤

◦ struggles

-2 -1 0 1 2
-2

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Ed Bueler (MATH 661) Steepest descent Fall 2024 9 / 14



quadratic functions

consider general quadratic functions in Rn

such functions can always be written

f (x) =
1
2

x⊤Q x − c⊤x + d

◦ Q is a symmetric square matrix, c is a column vector, d ∈ R
◦ recall that

∇f (x) = Q x − c

◦ example I above: c = 0, d = 0, and Q =

[
5 0
0 1/2

]
if Q is positive definite then

f is strictly convex, and
there is unique global minimizer where ∇f = 0: x∗ = Q−1c

so quadratic functions are easy to handle, but steepest descent does a
bad job!

Ed Bueler (MATH 661) Steepest descent Fall 2024 10 / 14



line search for quadratic functions

given any descent direction pk at xk , for quadratic functions the optimal
step size is

αk =
−p⊤

k ∇f (xk )

p⊤
k Qpk

=
p⊤

k (c − Qxk )

p⊤
k Qpk

◦ Exercise P15 on Assignment # 7

this αk minimizes g(α) = f (xk + αpk ) over α > 0
thus back-tracking is not needed for quadratic functions

but steepest descent is still slow
◦ Exercise P16 asks you to reproduce Example 12.1 in section 12.2 of the

textbook. In this example, steepest descent with optimal step size uses a
totally-unnecessary 216 steps to get modest accuracy.

◦ fundamentally, the steepest descent direction is wrong,
◦ and the steepest descent idea by itself does not address how far to go

Ed Bueler (MATH 661) Steepest descent Fall 2024 11 / 14



line search for quadratic functions

given any descent direction pk at xk , for quadratic functions the optimal
step size is

αk =
−p⊤

k ∇f (xk )

p⊤
k Qpk

=
p⊤

k (c − Qxk )

p⊤
k Qpk

◦ Exercise P15 on Assignment # 7

this αk minimizes g(α) = f (xk + αpk ) over α > 0
thus back-tracking is not needed for quadratic functions

but steepest descent is still slow
◦ Exercise P16 asks you to reproduce Example 12.1 in section 12.2 of the

textbook. In this example, steepest descent with optimal step size uses a
totally-unnecessary 216 steps to get modest accuracy.

◦ fundamentally, the steepest descent direction is wrong,
◦ and the steepest descent idea by itself does not address how far to go

Ed Bueler (MATH 661) Steepest descent Fall 2024 11 / 14



steepest descent is the wrong direction

for quadratic objective functions f (x) = 1
2 x⊤Qx − c⊤x ,

the Newton iteration converges to x∗ = Q−1c in one step

Newton uses this search direction pk which solves:

∇2f (xk )pk = −∇f (xk )

steepest descent uses pk which solves:

I pk = −∇f (xk )

the identity I is the wrong matrix; for quadratic functions it should be the
Hessian of f at xk

unconstrained optimization needs the information in the Hessian ∇2f (xk ),
which rotates and scales the steepest descent vector −∇f (xk ) to be an
accurate step toward the minimum

◦ that’s why it is worth reading Chapters 11, 12, and 13!
◦ especially “quasi-Newton” methods
◦ however, computing and solving with the Hessian is expensive

Ed Bueler (MATH 661) Steepest descent Fall 2024 12 / 14



summary

steepest descent (gradient descent) simply uses the search direction
pk = −∇f (xk )

determining the step size αk , when actually taking the step, namely
xk+1 = xk + αk pk , is nontrivial

◦ line search (section 11.5) or trust region (11.6) is needed
◦ for general functions, back-tracking is reasonable
◦ for quadratic functions we can use the optimal step size

even with good line search, steepest descent sucks
◦ steepest descent is slow when contour lines (level sets) are highly curved
◦ going down the gradient is generally the wrong direction:

steepest descent direction pk = −I−1∇f (xk ) is wrong, while
Newton direction pk = −(∇2f (xk ))

−1∇f (xk ) is perfect for quadratic objectives
◦ the steepest-descent vector pk = −∇f (xk ) has a length which depends on

the scaling of f (x), which is bad
the Newton step does not have this flaw

however, functions like Rosenbrock remain difficult even for Newton

Ed Bueler (MATH 661) Steepest descent Fall 2024 13 / 14



the other thing you should know . . .

for machine learning (ML) problems, a version called stochastic gradient
descent (SGD) is the industry baseline

◦ Adam, etc. are based on SGD, but with added “moment tracking”

if ML were actually optimization, as it is usually portrayed, this would be
very odd
. . . however, ML is not really optimization, but a different game
I hope to tell the story by the end of the semester

Ed Bueler (MATH 661) Steepest descent Fall 2024 14 / 14


