Steepest descent

needs help

Ed Bueler

MATH 661 Optimization

Fall 2024

- these slides are a brief introduction to a well-known topic in unconstrained optimization: steepest descent
 - also known as gradient descent
- please read sections 12.1 and 12.2 of the textbook,¹ but just ignore the Lemmas for now; we will get back to it
- codes seen in these slides are already posted at the Codes tab of the public site

¹Griva, Nash & Sofer, *Linear and Nonlinear Optimization*, 2nd ed., SIAM Press 2009

the steepest descent algorithm

- assume $f : \mathbb{R}^n \to \mathbb{R}$ has (at least) one continuous derivative
- we want to solve the unconstrained problem:

 $\min_{\mathbb{R}^n} f(x)$

- the steepest descent algorithm:
 - 1. User supplies x₀.
 - 2. For $k = 0, 1, 2, \ldots$
 - (i) User provides stopping criterion: If x_k is optimal then stop.
 - (ii) Search direction is $p_k = -\nabla f(x_k)$.
 - (iii) User determines step length $\alpha_k > 0$.
 - (iii) Let $x_{k+1} = x_k + \alpha_k p_k$.

steepest descent is obvious

- steepest descent is an obvious interpretation of "General Optimization Algorithm II" in §2.4
 - o direction is chosen as "go straight downhill"
 - the gradient points straight uphill
 - but we don't know how to use the length of $\nabla f(x_k)$
 - so we *must* make a nontrivial step-length choice for α_k
 - also we need a stopping criterion
 - o and an initial iterate
- any choice of steepest descent length (p_k = −α∇f(x_k) and α > 0) generates a (feasible) descent direction at x_k

• recall: *p* is a *descent direction at x* if $p^{\top} \nabla f(x) < 0$

• *fun fact:* if $\nabla f(x_k) \neq 0$ then the direction of $p_k = -\nabla f(x_k)$ solves this optimization problem

$$\min_{\|\boldsymbol{q}\|=1} \boldsymbol{q}^\top \nabla f(\boldsymbol{x}_k)$$

one way to choose step length: back-tracking

- we will see in section 11.5 that we can prove convergence of many unconstrained optimization algorithms as long as the step-size α_k is chosen to satisfy certain conditions
 - o this is the line search idea
- for now I just need *some* reasonable way to choose α_k
- the most common way to satisfy these conditions is "back-tracking"
 - page 378 of the textbook
 - an implementation:

• we will return to this topic, and prove remarkable Theorem 11.7

steepest-descent with back-tracking code

- here is a basic implementation of steepest-descent with back-tracking
 SDBT
- it assumes that the user supplies x₀ and a function *f* that returns both the values *f*(*x*) and the gradient ∇*f*(*x*):

```
function [z, xk, k] = sdbt(f, x0, tol)
xk = x0(:):
maxiters = 10000;
for k = 1:maxiters
    [fk, dfk] = f(xk);
                                  % objective and gradient
    if norm(dfk) < tol
        z = fk;
        break
                                  % SUCCESS
    end
    pk = - dfk(:);
                                % steepest descent
    alpha = bt(xk, pk, dfk, f); % back-tracking
    xk = xk + alpha * pk;
end
```

steepest-descent-back-tracking: example I

- suppose $f(x) = 5x_1^2 + \frac{1}{2}x_2^2$ for $x \in \mathbb{R}^2$, an easy quadratic objective function with global minimum at $x^* = (0, 0)^\top$
- using the codes:

• this is based on a function which returns f(x) and $\nabla f(x)$:

```
function [fx, dfx] = easyq(x)
fx = 5 * x(1)^2 + 0.5 * x(2)^2;
dfx = [10 * x(1);
            x(2)];
```

steepest-descent-back-tracking: example I

- recall: $f(x) = 5x_1^2 + \frac{1}{2}x_2^2$, $x_0 = (2, 20)^{\top}$
- result from SDBT:

is this result o.k.?

Ed Bueler (MATH 661)

steepest-descent-back-tracking: example II

• a famously-harder problem in \mathbb{R}^2 is to minimize the *Rosenbrock function*:

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

- a quartic polynomial in 2 variables
- has a single global minimum at $x^* = (1, 1)^{\top}$
- o has steep "banana" shaped contours (bottom left)

-2

quadratic functions

- consider general quadratic functions in \mathbb{R}^n
- such functions can always be written

$$f(x) = \frac{1}{2}x^{\top}Qx - c^{\top}x + d$$

Q is a symmetric square matrix, *c* is a column vector, *d* ∈ ℝ
 recall that

$$\nabla f(x) = Qx - c$$

• example I above: $c = 0$, $d = 0$, and $Q = \begin{bmatrix} 5 & 0 \\ 0 & 1/2 \end{bmatrix}$

- if Q is positive definite then
 - f is strictly convex, and
 - there is unique global minimizer where $\nabla f = 0$: $x^* = Q^{-1}c$
- so quadratic functions are easy to handle, but steepest descent does a bad job!

line search for quadratic functions

 given any descent direction p_k at x_k, for quadratic functions the optimal step size is

$$\alpha_{k} = \frac{-\boldsymbol{p}_{k}^{\top} \nabla f(\boldsymbol{x}_{k})}{\boldsymbol{p}_{k}^{\top} \boldsymbol{Q} \boldsymbol{p}_{k}} = \frac{\boldsymbol{p}_{k}^{\top} (\boldsymbol{c} - \boldsymbol{Q} \boldsymbol{x}_{k})}{\boldsymbol{p}_{k}^{\top} \boldsymbol{Q} \boldsymbol{p}_{k}}$$

- Exercise P15 on Assignment # 7
- this α_k minimizes $g(\alpha) = f(x_k + \alpha p_k)$ over $\alpha > 0$
- thus back-tracking is not needed for quadratic functions
- but steepest descent is still slow
 - Exercise P16 asks you to reproduce Example 12.1 in section 12.2 of the textbook. In this example, steepest descent with optimal step size uses a totally-unnecessary 216 steps to get modest accuracy.
 - fundamentally, the steepest descent direction is wrong,
 - o and the steepest descent idea by itself does not address how far to go

line search for quadratic functions

 given any descent direction p_k at x_k, for quadratic functions the optimal step size is

$$\alpha_{k} = \frac{-\boldsymbol{p}_{k}^{\top} \nabla f(\boldsymbol{x}_{k})}{\boldsymbol{p}_{k}^{\top} \boldsymbol{Q} \boldsymbol{p}_{k}} = \frac{\boldsymbol{p}_{k}^{\top} (\boldsymbol{c} - \boldsymbol{Q} \boldsymbol{x}_{k})}{\boldsymbol{p}_{k}^{\top} \boldsymbol{Q} \boldsymbol{p}_{k}}$$

- Exercise P15 on Assignment # 7
- this α_k minimizes $g(\alpha) = f(x_k + \alpha p_k)$ over $\alpha > 0$
- thus back-tracking is not needed for quadratic functions
- but steepest descent is still slow
 - Exercise P16 asks you to reproduce Example 12.1 in section 12.2 of the textbook. In this example, steepest descent with optimal step size uses a totally-unnecessary 216 steps to get modest accuracy.
 - fundamentally, the steepest descent direction is wrong,
 - and the steepest descent idea by itself does not address how far to go

steepest descent is the wrong direction

• for quadratic objective functions $f(x) = \frac{1}{2}x^{\top}Qx - c^{\top}x$, the Newton iteration converges to $x^* = Q^{-1}c$ in one step

• Newton uses this search direction *p_k* which solves:

$$\nabla^2 f(x_k) \, p_k = -\nabla f(x_k)$$

steepest descent uses p_k which solves:

$$I p_k = -\nabla f(x_k)$$

- the identity *I* is the wrong matrix; for quadratic functions it should be the Hessian of *f* at *x*_k
- unconstrained optimization needs the information in the Hessian $\nabla^2 f(x_k)$, which rotates and scales the steepest descent vector $-\nabla f(x_k)$ to be an accurate step toward the minimum
 - o that's why it is worth reading Chapters 11, 12, and 13!
 - especially "quasi-Newton" methods
 - however, computing and solving with the Hessian is expensive

summary

- steepest descent (gradient descent) simply uses the search direction $p_k = -\nabla f(x_k)$
- determining the step size α_k , when actually taking the step, namely $x_{k+1} = x_k + \alpha_k p_k$, is nontrivial
 - line search (section 11.5) or trust region (11.6) is needed
 - o for general functions, back-tracking is reasonable
 - o for quadratic functions we can use the optimal step size
- even with good line search, steepest descent sucks
 - o steepest descent is slow when contour lines (level sets) are highly curved
 - going down the gradient is generally the wrong direction:
 - steepest descent direction $p_k = -I^{-1}\nabla f(x_k)$ is wrong, while
 - Newton direction $p_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$ is perfect for quadratic objectives
 - the steepest-descent vector $p_k = -\nabla f(x_k)$ has a length which depends on the scaling of f(x), which is bad
 - the Newton step does not have this flaw
- however, functions like Rosenbrock remain difficult even for Newton

- for machine learning (ML) problems, a version called stochastic gradient descent (SGD) is the industry baseline
 - Adam, etc. are based on SGD, but with added "moment tracking"
- if ML were actually optimization, as it is usually portrayed, this would be very odd
- ... however, ML is not really optimization, but a different game
- I hope to tell the story by the end of the semester