
Math 661 Optimization (Bueler) 31 October, 2022

About your project

Goal. The goal of the Math 661 project is for you to focus on topics of particular
interest, and become more familiar with certain optimization problems and algo-
rithms than is possible with the brief coverage typical of the rest of the course.

Expectations. All projects must include at least one specific optimization problem
and at least one specific optimization algorithm. You will implement at least one al-
gorithm, i.e. by a code you write in MATLAB/PYTHON/JULIA/etc., and then apply
your code to at least one example problem, to solve it.

However, your project may be application-driven (choose the problems first) or
algorithm-driven (choose the algorithms first). See the flowchart on page 3.

Both mathematical analysis and numerical computation are required. Your anal-
ysis should use theory from the textbook1 and/or from other references. Analysis
is important as it shows you have absorbed ideas from the course, and because it
distinquishes between algorithms. Once your code is running you should provide
some empirical (numerical experimentation) evidence regarding the error and/or
performance of your algorithm(s). Numerical evidence shows that you understood
the algorithm well enough to implement it correctly.

The problem(s) you choose must be in the following form:

(1) min
x∈Rn

f(x) subject to
gi(x) = 0, i ∈ E ,
gi(x) ≥ 0, i ∈ I,

(Of course you may replace min with max.) If your project is algorithm-driven then
you must identify which such problems are solved by your algorithms(s).

Form (1) describes a very large class of problems. Your chosen problems must
be finite-dimensional, but they may arise from an infinite-dimensional source. The
problems must be well-enough understood to allow you to both precisely iden-
tify the objective function f(x) and to precisely identify a feasible set S defined by
finitely-many equality and inequality constraints gi(x). It is o.k. if there are no con-
straints, with E and I as empty sets, but I may provide feedback on your Part I
proposal which suggests you consider a constrained form of your problem.

Due dates. There are two due dates for the project:

Part I = project proposal: Part I is due Friday 11 November at the start of class.
There are no format requirements for the proposal, but it must be two pages or

less. It should precisely say what problem(s) or algorithm(s) you will address. If
application-driven it should explain briefly where the optimization problem(s) came
from. In any case it should briefly motivate your proposed choice(s) of algorithm(s).
Several quality references are expected; online references are o.k. though many in-
formal online documents are of low quality. Please make specific references to our

1Griva, Nash, and Sofer, Linear and Nonlinear Optimization, 2nd ed., SIAM Press 2009.



2

textbook when that is appropriate. Your proposal should talk though what the com-
plete project will contain, to the degree possible.

Spending at least a few hours on thinking and research at this stage can be very
effective, but I suggest that you spend at most 6 hours on Part I.

Part II = actual project: The completed project is due Monday 12 December at 5pm.
It should have the format as shown below on page 4. Please use the indicated

section headings! The total length must be 20 pages or less; I will not accept longer
projects. The total time spent on the whole project should be at most 25 hours.

The format expectations can be met by using the LATEX template posted online at
bueler.github.io/opt/projects.html, but this is certainly not required.

Choosing a topic. I will help you choose problem(s) and algorithm(s) of reasonable
difficulty. The bigger the scope the easier it is to get lost in the application, or in
difficulties with programming/debugging/analysis. Your Part I proposal allows
me to give good feedback on the topic, a gentle nudge in the direction of a variation,
or a different analysis to consider, or that you bite off less, and etc.

You may not choose a topic which will be adequately covered in lecture. For ex-
ample, neither the basic simplex method nor basic line search is a good topic. How-
ever, for example, implementations of the simplex method which respect sparsity
would be a great choice (Chapter 7). Comparing line search methods beyond back-
tracking, or quasi-Newton methods beyond BFGS, or trust-region methods, would
all be good choices (Chapters 11 and 12). There are many constrained optimization
algorithms we will not get to, especially Chapters 8, 10, and 16.

Here are three approaches to choosing a topic if you don’t already have one:

Approach 1: Inspiration from the Wikipedia page on mathematical optimization. See the
“Major subfields,” “Computational . . . techniques”, and “Applications” sections.

en.wikipedia.org/wiki/Mathematical optimization

Approach 2: Investigate skipped material from the textbook. Consider section(s) that you
find interesting and which we did not cover.

Approach 3: A topic related to your thesis (if you have one). Please talk to your thesis
advisor. It is reasonable to ask “are there optimization problems related to my ex-
pected thesis”? There may be significant algorithms which arise in your field of
interest, or problems like parameter fitting, inverse modeling, or optimal design.
There may be a paper to read about optimization in your field. Please do not cover
territory comparable to your whole thesis; instead extract a little part, or extend
a little part, and do it carefully. In any case, please make an effort to explain the
context of your problem in your proposal.

https://bueler.github.io/opt/projects.html
https://en.wikipedia.org/wiki/Mathematical_optimization


3

Structure of the project. Here is a rough flow-chart. It aligns well with the section
headings on the next page.

your
project is
driven by

introduce
algorithm(s)

algorithm

give pseudocode(s)

propose at least one
example problem for

testing

introduce
application(s)

application

describe at least one
example problem

describe at least one
algorithm; give
pseudocodes

implement algorithms
in MATLAB, PYTHON,

JULIA, . . .

demonstrate runs on
example(s); show

results

analysis:
• convergence: e.g. state theorems; compare rates
• performance: e.g. count operations; show timing

what you would do
next? conclude



4

YOUR TITLE HERE

YOUR NAME

1. Introduction

PUT CONTENT HERE; PERHAPS CITE SOMETHING [1]

2. Algorithms [or Examples]

MORE CONTENT

3. Examples [or Algorithms]

CONTENT

4. Implementation

CONTENT

% MYCODE This is my matlab implementation

x = 1:10;

y = randn(size(x));

plot(x,y)

z = 2+2

MORE CONTENT

>> mycode % here I am running the code

z = 4

5. Results

CONTENT

6. Analysis

CONTENT; CITE SOMETHING? [2]

7. Conclusion

CONTENT

References

[1] A. Einstein (1905). Zur Elektrodynamik bewegter Körper, Annalen der Physik, 322 (10), 891–921.
[2] I. Griva, S. Nash, & A. Sofer (2009). Linear and Nonlinear Optimization, 2nd ed., SIAM Press.

Date: August 25, 2022.
1


	Goal
	Expectations
	Due dates
	Choosing a topic
	Structure of the project

