Assignment #9

Due Friday 6 December 2024, at the start of class

From the textbook^{[1](#page-0-0)} please read sections 12.3, 14.1–14.7 and 15.1–15.4.

DO THE FOLLOWING EXERCISES from section 12.3, pages 420–421:

- Exercise 3.4 *Hint. You may start by writing* C as an outer product, $C = vz^T$.
- Exercise 3.8

DO THE FOLLOWING EXERCISES from section 14.2, pages 489–491:

• Exercise 2.7 *Hint. Use techniques from* either *section 14.2 or 14.3.*

Problem P20. Suppose $c \in \mathbb{R}^n$ is a nonzero vector and consider the problem

minimize
$$
z = c^{\top} x
$$

subject to
$$
\sum_{i=1}^{n} x_i^2 = 1
$$

where $x \in \mathbb{R}^n$. Note that the single equality constraint can be written as $||x||^2 = 1$.

(a) By arguing informally explain why the solution is $x_* = -\frac{c}{\ln a}$ $\frac{c}{\|c\|}$. Use a sketch of the $n = 2$ case to explain.

(b) The necessary optimality conditions for this problem are addressed by Theorem 14.15 on page 504 of the textbook. Compute the Lagrangian and state the first-order necessary conditions in detail. (*You do* not *need to compute a null-space matrix for this.*)

(c) Solve the conditions in **(b)** algebraically to confirm the solution in part **(a)**. How many points (x_*, λ_*) are there which satisfy the first-order necessary conditions?

Problem P21. *Before doing this problem read Example 14.20 on pages 506–507. This problem asks for a similar analysis.*

Consider the problem

minimize $f(x) = (x_1 - 1)^2 + (x_2 + 1)^2$ subject to $x_1^2 + x_2^2 \leq 9$ $x_2 > 0$

¹Griva, Nash, and Sofer, *Linear and Nonlinear Optimization*, 2nd ed., SIAM Press 2009.

(a) Sketch the feasible set and explain informally, perhaps using contours of f, why $x_* = (1, 0)^\top$ is the solution.

(b) Write the constraints in the form $g_i(x) \geq 0$. Compute the Lagrangian and its gradient. For each of the points $A = (0,0)^{\top}, B = (0,3)^{\top}$, and $C = (1,0)^{\top}$ compute the values of λ_i satisfying the zero-gradient condition. Address whether these points satisfy the first-order optimality conditions, that is, whether they are candidates for a local minimizer. Show in particular that C satisfies all the first-order conditions in Theorem 14.18. (*You do* not *need to find null-space matrices to answer this question.*)

Problem P22. Consider nonlinear optimization problems on $x \in \mathbb{R}^n$ which have standard-form linear constraints:

minimize	$f(x)$
subject to	$Ax = b$
$x \geq 0$	

Assume that there are m scalar constraint equations and that A has full row rank. Thus $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $m \leq n$ (as usual).

We want to visualize the possible feasible sets for such problems. In 2D ($n = 2$) there are exactly three possibilities $m = 0, 1, 2$ for the dimension of the feasible set. The cartoons below illustrate these possibilities when the feasible set S is non-empty, and when it is bounded for $m > 0$.

For 3D ($n = 3$) there are four nonempty, and bounded if $m > 0$, possibilities. Sketch the four corresponding cartoons. These cartoons should have the same annotations as the 2D versions above.