
Math 661 Optimization (Bueler) 26 October 2024; version 2

Assignment #6

Due Friday 1 November 2024, at the start of class (revised)

From the textbook1 please read sections 5.2–5.4 on the simplex method, but note that
you can skip subsections 5.2.3, 5.2.4, and 5.4.2. (That is, skip the stuff on tableaus and
the “big-M” method.) You can read section 5.3 lightly, and what you actually need
from section 5.4 is on pages 149–150. To complete our coverage of linear program-
ming, please read sections 6.1–6.2 on duality and sections 9.1–9.3 on computational
complexity.

Regarding linear programming generally, consider spending some time with the lin-
ear programming Wikipedia page. Note the list of software. See also the revised
simplex method page.

We are transitioning to nonlinear optimization. Please read sections 2.5 on rates of
convergence and 2.7 on Newton’s method for nonlinear systems.

DO THE FOLLOWING EXERCISES from section 2.7, pages 74–75:
• Exercise 7.1
• Exercise 7.10

DO THE FOLLOWING EXERCISES from section 6.2, pages 185–189:
• Exercise 2.4 Hint. It is merely a corollary of weak duality (Theorem 6.4).
• Exercise 2.11 Hint. Use strong duality (Theorem 6.9) and then Corollary 6.6.

Problem P11. I have posted kleeminty.m, ezsimplex.m, and sfsimplex.m at
bueler.github.io/opt/codes.html

Please download these codes; they are in simplex.zip at the same page.2 The code
kleeminty.m3 sets up a Klee-Minty cube example in “EZ” form for any size n. Note
that kleeminty.m calls ezsimplex.m, which calls sfsimplex.m, so they all need
to be in the current directory to work.

Now, on your machine, for how big an n can you run kleeminty(n) in under
10 seconds? For this maximum n value, how many iterations does it take to find the
optimal solution? What are the number of constraints and the number of variables

1Griva, Nash, and Sofer, Linear and Nonlinear Optimization, 2nd ed., SIAM Press 2009.
2For Python and Julia people I recommend just slumming it with the rest of us for P11–P13. Do

them in Octave online, or Matlab online, etc.? Rewriting all my codes would be tedious.
3The specifics of the P11 kleeminty.m example are from the Klee-Minty cube Wikipedia page. The

version in section 9.3 of the textbook is essentially the same, but its coefficients grow unnecessarily fast.

https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Revised_simplex_method
https://en.wikipedia.org/wiki/Revised_simplex_method
https://bueler.github.io/opt/codes.html
https://en.wikipedia.org/wiki/Klee-Minty_cube


2

if you were to put this maximum n problem in standard form? Note the exponential
relation between the number of variables and the number of iterations.

Problem P12. Suppose we have an LP problem in standard form, with n variables
and m equality constraints as usual, but suppose that we do not know a basic feasible
solution. As explained on the first two pages of section 5.4, one can set up a phase-1
problem with one added artificial variable ai for each equality constraint, i = 1, . . . ,m,
and then change the objective to

minimize z′ = a1 + a2 + · · ·+ am.

This creates a new LP problem in standard form, now with n+m variables, but with
m equality constraints as before. However, now a basic feasible solution (BFS) is
clear! (Why? Note you can set the original variables to zero and use the constraints to solve
for the artificial variables. Confirm that this is a BFS to the new problem.)

Write a running code or complete pseudocode4 which implements this phase-1
strategy and generates an initial BFS. Your (pseudo-)code should have signature

function x = phaseone(A,b)

Your code or pseudocode should call a standard-form simplex method once it sets-
up the new LP problem; you are not expected to implement the simplex method
here.5 Your code or pseudocode should report failure when the original problem is
not feasible; how is that detected?

Problem P13. Return to problem salmon on the 5 example optimization problems
handout. Put it in standard form, figure out a BFS, and solve it using the simplex
method.6 Of course, you can refer to Assignment #1 for the correct answer.

Problem P14. This problem replaces, simplifies, and clarifies Exercise 5.1 in section 2.5.

For each of the following 3 sequences, determine the limit x∗. Then determine the
rate of convergence; is it linear, superlinear, or quadratic? Specifically, recalling ek =
xk − x∗, determine r ≥ 1 and 0 < C < +∞ in the limit

lim
k→∞

∥ek+1∥
∥ek∥r

= C.

(i) The sequence with general term xk = 2−k, for k = 1, 2, . . .
(ii) The sequence 1.05, 1.0005, 1.000005, . . . with general term xk = 1 + 5 × 10−2k,

for k = 1, 2, 3, . . .

(iii) The sequence with general term xk = 2−(2k).

4Either code or pseudocode is fine but running a code is more fun!
5However, it is easy to use my implementation. Given how my code sfsimplex.m works, the line

>> [x, z] = sfsimplex(c,A,b,phaseone(A,b))
solves the standard form problem, from the data c, A, b, by the two-phase method, in a case where you
don’t know an initial BFS. Note sfsimplex.m gets called twice in this one-line command!

6You may do P13 all by hand, or use my sfsimplex.m, or use even use the 2-phase method if you
implemented that in P12. If you don’t use 2-phase you’ll have to find a BFS by hand.

https://bueler.github.io/opt/assets/worksheets/F24/5exs.pdf

