Name:

Math 661 Optimization (Bueler) Friday, 18 October 2024

Midterm Exam

65 minutes. No book. No electronics or internet. 1/2 sheet of notes allowed. (100 points possible)

1. (4 pts) Given a matrix $A \in \mathbb{R}^{n \times n}$, define what it means for A to be positive definite.

2. (a) (4 pts) Define *convex set* (for a subset $S \subset \mathbb{R}^n$).

(b) (4 pts) Define convex function (for a real-valued function f defined on a convex set $S \subset \mathbb{R}^n$).

(c) $(4 \; pts)$ For a convex set $S \subset \mathbb{R}^n$, define what it means for $x \in S$ to be an *extreme point*.

3. (a) $(4 \; pts)$ State the *standard form* of a linear programming problem.

(b) (4 pts) For a problem in standard form, define basic solution.

4. Let $f(x) = 2x_3x_2 + x_3^2 - x_2 - 2x_1^2$ for $x \in \mathbb{R}^3$. (a) (6 pts) Compute the gradient and Hessian of f at $\tilde{x} = (-1, 1, 1)^{\top} \in \mathbb{R}^3$.

(b) (5 pts) Is $p = (-2, 1, 0)^\top$ a descent direction for f at \tilde{x} from part (a)?

5. Consider the optimization problem

minimize
\nsubject to
\n
$$
f(x) = \exp(x_1^4 + x_2^2) - x_1^4 + \sin(x_1 x_2 x_3)
$$
\n
$$
2x_1 - 2x_2 + x_3 = -1
$$
\n
$$
x_1 + 4x_2 \ge -5
$$
\n
$$
x_2 \ge -1
$$

(a) $(5 \; pts)$ Is $x = (2, 0, -5)^{\top}$ feasible?

(b) (5 pts) Considering all of the constraints, both equality and inequality, which are active and which are inactive at the feasible point $\tilde{x} = (0, -1, -3)^\top$?

Extra Credit A. (3 pts) For $x \in \mathbb{R}^n$, completely solve the standard-form linear programming problem in which there are no equality constraints:

minimize $z = c^{\top} x$ subject to $x \geq 0$

(Hint. Don't do simplex (or other) method. Please think about it. Consider all cases for c.)

- 4
- 6. (a) (5 pts) Sketch the feasible set for the following linear programming problem:

minimize $z = 3x_1 - 8x_2$ subject to $2x_1 + x_2 \le 15$ $3x_1 - x_2 \ge -2$ $x_1 \geq 0, x_2 \geq 0$

(b) (5 pts) Convert the problem in part (a) to standard form.

7. (4 pts) Given a feasible set $S \in \mathbb{R}^n$, and a feasible point $\tilde{x} \in S$, define what it means for $p \in \mathbb{R}^n$ to be a *feasible direction*.

8. (a) (5 pts) Sketch the feasible set for the following linear programming problem:

(b) (5 pts) Convert the problem in part (a) to standard form.

(c) (5 pts) At the feasible point $\tilde{x} = (6, 0)^{\top}$ for the original problem, notice that $p = (0, 1)^{\top}$ is a feasible direction. What is the maximum $\alpha > 0$ so that $x = \tilde{x} + \alpha p$ is feasible?

(d) (5 pts) Does this linear programming problem have a solution? Explain briefly.

6

9. (a) (5 pts) Consider the standard form linear programming problem

minimize $z = -x_1 + x_2$ subject to $-x_1 + x_2 + x_3 = 3$ $2x_1 + x_2 + x_4 = 4$ $x \geq 0$

Find a basic feasible solution x with $x_1 = 0$ and $x_2 = 0$.

(b) (8 pts) Let x be the basic feasible solution from part (a). Use the template below to complete one iteration of the (revised) simplex method. At the bottom, fill in the basic and non-basic variables (indices) at the completion of this first iteration.

result: $\mathcal{B} = \{$ $\}, \qquad \mathcal{N} = \{$ $\{$ } 10. (8 pts) Prove the following theorem.

Theorem. If x_* is a local minimizer of a convex optimization problem then x_* is also a global minimizer. Proof.

Extra Credit B. (2 pts) Suppose $A \in \mathbb{R}^{m \times n}$ has full row rank. Suppose that this orthogonal factorization has been done:

$$
A^{\top} = QR.
$$

(Here Q is square with orthonormal columns, and R is upper triangular.) Explain how to use this factorization to form a null space matrix \boldsymbol{Z} for $\boldsymbol{A}.$

blank page for scratch work. clearly-label anything you want to be graded