Name: SOLUTIONS

Math 661 Optimization (Bueler)

Friday, 28 October 2022

Midterm Exam

In class. No book. No calculator. 1/2 sheet of notes allowed.

(100 points possible)

1. Consider Newton's method to solve the scalar equation f(x) = 0.

(a) (8 pts) Draw and label a sketch of one step of Newton's method. In particular, your graph should show y = f(x) as a generic curve, then an iterate x_k , and then show (graphically) how the next iterate x_{k+1} is determined.

(b) (5 pts) Do one step of Newton's method to solve the equation $x^3 - x + 1 = 0$, starting at $x_0 = 1$. That is, compute x_1 .

$$f(x) = x^{3} - x + 1$$

$$f'(x) = 3x^{2} - 1$$

$$X_{1} = x_{0} - \frac{f(x_{0})}{f(x_{0})}$$

$$= 1 - \frac{1 - 1 + 1}{3 - 1}$$

$$= 1 - \frac{1}{2} = \frac{1}{2}$$

2
2. Let
$$f(x) = 4x_{3}x_{2} + x_{3}^{2} + x_{2} - 2x_{1}^{2}$$
 for $x \in \mathbb{R}^{3}$.
(a) $(l \ pts)$ Compute the gradient and Hessian of f at $x_{k} = (-1, 1, 1)^{T} \in \mathbb{R}^{3}$.
 $\nabla f(x) = \begin{bmatrix} -4x_{1} \\ 4x_{3} + 1 \\ 4x_{2} + 2x_{3} \end{bmatrix} \xrightarrow{r} \Rightarrow \nabla f(x_{k}) = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$
 $\nabla^{2}f(x) = \begin{bmatrix} -4 \\ 0 \\ 4x_{2} + 2x_{3} \end{bmatrix} \xrightarrow{r} \Rightarrow \nabla f(x_{k}) = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$
 $\nabla^{2}f(x) = \begin{bmatrix} -4 \\ 0 \\ 4x_{2} + 2x_{3} \end{bmatrix} \xrightarrow{r} \Rightarrow \nabla f(x_{k}) = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$
(b) $(l \ pts)$ Does $f(x)$ have any stationary points? If so, find them.
 $\nabla f(x_{k}) = 0$ $\sum_{k=1}^{k} = \sum_{k=2}^{k} \sum_{s=2}^{k} \sum_{s=2}^{k}$

3. Consider the optimization problem

minimize
$$f(x) = \exp(x_1^4 + x_2^2) - x_1^4 + \sin(x_1 x_2 x_3)$$

subject to
$$2x_1 - 2x_2 + x_3 = -1$$

$$x_1 + 4x_2 \ge -3$$

$$7x_2 - 5x_3 \ge -1$$

(a) $(4 \ pts)$ Is $x = (-2, 0, 3)^{\top}$ feasible?

-4-0+3=-1~ (3rd constraint not optified) NO $-2+0 \ge -3 \checkmark$ -0-152-1 X (b) (4 pts) Considering both equality and inequality constraints, which constraints are active and which are inactive at $x = (1, 3, 3)^{\top}$?

x is feasible:	since both inequalities
2-6+3=-11	are strict at x, only
1+12>-3~	the equality constraint is active
21-15>-1	while
	inequality constraints are machine

Extra Credit. (3 pts) For $x \in \mathbb{R}^n$, completely solve the standard-form linear programming problem when there are no equality constraints:

minimize $c^{\top}x$ Claims: (1) if any entry in c is negatile (ci<0) then the problem is unbounded: "optima [cTx can be as negative as desired] subject to x > 0② if ci≥o for all i then x=0 15 an optimum; other optima where xi>o () if ci>o for all the x=0 is the unique optimin

4. (10 pts) Consider general minimization problems of the form

minimize
$$f(x)$$

subject to $a_j^{\top} x = b_j$ for $j \in \mathcal{E}$
 $a_j^{\top} x \ge b_j$ for $j \in \mathcal{I}$

for given vectors $a_j \in \mathbb{R}^n$ and scalars b_j .

Suppose \bar{x} is a point in the feasible set. Let $\hat{\mathcal{I}}$ be the set of indices $j \in \mathcal{I}$ where the inequality constraint $a_j^{\top} x \geq b_j$ is active at \bar{x} . Show that if $a_j^{\top} p = 0$ for all $j \in \mathcal{E}$, and if $a_j^{\top} p \geq 0$ for all $j \in \hat{\mathcal{I}}$, then p is a feasible direction.

Proof: Recall p is a feasible direction at
$$\overline{x}$$

if $\overline{x} + \alpha p$ is feasible for all sufficiently small
 $\alpha > 0$. For $j \in \mathbb{E}$, $a_j^T(\overline{x} + \alpha p) = a_j^T \overline{x} + \alpha g_s^T p$
 $= b_j + \alpha \cdot 0 = b_j$
so $\overline{x} + \alpha p$ satisfies equality constraints.
For $j \in \widehat{L}$, $a_j^T(\overline{x} + \alpha p) = a_j^T \overline{x} + \alpha g_s^T p \ge b_j + 0$
so \widehat{L} inequality constraints still hold for any $\alpha > 0$.
For $j \in \widehat{L} \setminus \widehat{L}$, $a_j^T(\overline{x} + \alpha p) = a_j^T \overline{x} + \alpha g_s^T p$
 $\geq b_j + \alpha g_s^T p$. This value is nonnegative if
 $either \frac{-b_j}{g_s^T p} > 0$ or if $0 < \alpha < \frac{-b_j}{g_s^T p}$.
So all constraints hold if $\alpha > 0$ is
Sufficiently small. \square

5. (5 pts) Given a matrix $A \in \mathbb{R}^{n \times n}$, define what it means for A to be positive definite.

 $x^{T}Ax \ge 0$ for all $x \in \mathbb{R}^{n}$ $x^{T}Ax \ge 0$ for $x \ne 0$

- **6.** (a) (4 pts) Define convex set (for a subset S of \mathbb{R}^n).
 - if $x, y \in S$ and $0 \leq d \leq 1$ then $\alpha x + (1 - \alpha) y \in S$.
- (b) (4 pts) Define convex function (for a scalar valued function f(x)).
 - $f: S \rightarrow \Pi$ is <u>convex</u> if S is convex and if $x, y \in S$ and $0 \le \alpha \le 1$ implies $f(\alpha x + (1 - \alpha) y) \le \alpha f(\alpha) + (1 - \alpha) f(y)$.
- 7. (5 pts) For a linear programming problem in standard form, define basic feasible solution.

for min cTx a vector xs.t. Ax=b , $x \ge 0$ is a basic feasible solution if Ax=b, $x \ge 0$, and columns of A corresponding to $x_i \ge 0$ are linearly - independent

8. (a) (6 pts) Sketch the feasible set for the following linear programming problem:

(b) (6 pts) Convert the problem in (a) to standard form.

 $3x_1 - 9x_2 + 0x_3 + 0x_4$ min s.t. $5x_1 + 2x_2 + x_3 = 30$ $-3x_1 + x_2 + x_4 = 4$ $X_1 \ge 0, X_2 \ge 0, X_3 \ge 0, X_4 \ge 0$ so A -9 5 2 1 0-3 1 0 1, $b = \begin{bmatrix} 30 \\ 4 \end{bmatrix}$ C=

(c) (8 pts) Let x be the basic feasible solution to the standard-form problem, as computed in $\mathbf{8}(\mathbf{b})$, for which $x_1 = 0$ and $x_2 = 0$. Use the template to complete one iteration of the (reduced) simplex method. At the bottom, fill in the basic and non-basic variables (indices) at the completion of this first iteration.

$$B = \left\{ \begin{array}{c} \mathbf{3}, \mathbf{4} \end{array} \right\}, \quad B = \left[\begin{array}{c} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{array} \right], \quad c_B = \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array} \right], \quad \underline{Bx_B = b} \Rightarrow x_B = \hat{b} = \begin{bmatrix} \mathbf{3} \\ \mathbf{4} \end{bmatrix}$$

$$N = \left\{ \begin{array}{c} \mathbf{1}, \mathbf{2} \end{array} \right\}, \quad N = \left[\begin{array}{c} \mathbf{5} & \mathbf{2} \\ -\mathbf{3} & \mathbf{1} \end{array} \right], \quad c_N = \left[\begin{array}{c} \mathbf{3} \\ -\mathbf{7} \end{array} \right]$$

$$\underline{B^{\mathsf{T}}y = c_B} \Rightarrow y = \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array} \right] \quad \Rightarrow \quad \underline{c_N = c_N - N^{\mathsf{T}}y} = \left[\begin{array}{c} \mathbf{3} \\ -\mathbf{7} \end{array} \right]$$

$$\underline{B^{\mathsf{T}}y = c_B} \Rightarrow y = \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array} \right] \quad \Rightarrow \quad \underline{c_N = c_N - N^{\mathsf{T}}y} = \left[\begin{array}{c} \mathbf{3} \\ -\mathbf{7} \end{array} \right]$$

$$\frac{\hat{c}_N \ge 0?: \text{ step with optimum }}{\hat{c}_N} \quad \overrightarrow{c}_N \quad t = \left[\begin{array}{c} \mathbf{2} \end{array} \right] \rightarrow \quad \underline{B\hat{A}_t = A_t} \Rightarrow \hat{A}_t = \left[\begin{array}{c} \hat{a}_{1,t} \\ \vdots \\ \hat{a}_{m,t} \end{array} \right] = \left[\begin{array}{c} \mathbf{2} \\ \mathbf{1} \end{array} \right]$$

$$\frac{\hat{A}_t \le 0?: \text{ stop, unbounded }}{\hat{a}_{i,t}} \left\{ \begin{array}{c} \frac{\hat{s}_i}{\hat{a}_{i,t}} \right\} = \left\{ \begin{array}{c} \mathbf{30} \\ \mathbf{2} \end{array} \right\}, \quad \left\{ \begin{array}{c} \mathbf{30} \\ \mathbf{1} \end{array} \right\}, \quad \left\{ \begin{array}{c} \mathrm{idex of} \\ \mathrm{idex of} \\$$

result: $\mathcal{B} = \{ \begin{array}{c} \mathbf{3} \\ \mathbf{3} \\ \mathbf{2} \end{array} \}, \quad \mathcal{N} = \{ \begin{array}{c} \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \\ \mathbf{4} \end{array} \}$

9. $(5 \ pts)$ Given a linear programming problem in standard form

minimize	$z = c^{\top} x$
subject to	Ax = b
	$x \ge 0.$

What is the dual problem?

maximize s.t. b'y $A^Ty \in C$

10. (10 pts) Prove: **Theorem.** Let x_* be a local minimizer of a convex optimization problem. Then x_* is also a global minimizer.

Proof. Suppose
$$X_{x}$$
 is not a global minimizer,
so have is a deasible $y \in S_{A}$ so that $f(y) < f(x_{x})$.
Let $0 < \alpha < 1$. Since S is convex,
 $X_{x} + \alpha(y - x_{x}) = (1 - \alpha)x_{x} + \alpha y \in S$ is also
feasible. But since f is convex
 $f((1 - \alpha)x_{x} + \alpha y) \leq (1 - \alpha)f(x_{x}) + \alpha f(y)$
 $\leq (1 - \alpha)f(x_{x}) + \alpha f(x_{x})$
 $= f(x_{x})$.
We can choose $\alpha > 0$ so that $X_{x} + \alpha(y - x_{x}) = 2$
is as close to x_{x} as desired, but $f(z) < f(x_{x})$.
Thus X_{x} is not a local minimizer. By contradiction,
 X_{x} is a global minimizer. \Box