Midterm Exam
In class. No book. No calculator. $1 / 2$ sheet of notes allowed.
(100 points possible)

1. Consider Newton's method to solve the scalar equation $f(x)=0$.
(a) (8 pts) Draw and label a sketch of one step of Newton's method. In particular, your graph should show $y=f(x)$ as a generic curve, then an iterate x_{k}, and then show (graphically) how the next iterate x_{k+1} is determined.

(b) (5 pts) Do one step of Newton's method to solve the equation $x^{3}-x+1=0$, starting at

$$
\begin{aligned}
\left.\begin{array}{l}
f(x) \\
f^{\prime}(x)=3 x^{2}-1
\end{array}\right\} \quad x_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& =1-\frac{1-1+1}{3-1} \\
& =1-\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

2. Let $f(x)=4 x_{3} x_{2}+x_{3}^{2}+x_{2}-2 x_{1}^{2}$ for $x \in \mathbb{R}^{3}$.
(a) (4 pts) Compute the gradient and Hessian of f at $x_{k}=(-1,1,1)^{\top} \in \mathbb{R}^{3}$.

$$
\begin{aligned}
& \nabla f(x)=\left[\begin{array}{l}
-4 x_{1} \\
4 x_{3}+1 \\
4 x_{2}+2 x_{3}
\end{array}\right] \\
& \nabla^{2} f(x)=\left[\begin{array}{c|c|c}
-4 & 0 & 0 \\
\hline 0 & 0 & 4 \\
\hline 0 & 4 & 2
\end{array}\right]=\nabla^{2} f\left(x_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) (4pts) Does } f(x) \text { have any stationary points? If so, find them. } \\
& \begin{array}{cc}
\nabla f\left(x_{*}\right)=0
\end{array} \\
& \Leftrightarrow \begin{array}{l}
-4 x_{1}=0 \\
4 x_{3}+1=0 \\
4 x_{3}+2 x_{2}=0
\end{array}
\end{aligned} \quad \begin{aligned}
& x_{1}=0 \\
& x_{2}=-\frac{1}{2} x_{3}=\frac{1}{8} \\
& x_{3}=-1 / 4
\end{aligned} \Leftrightarrow x_{*}=\left[\begin{array}{c}
0 \\
1 / 8 \\
-1 / 4
\end{array}\right] \begin{aligned}
& \text { only } \\
& \text { stationinany } \\
& \text { point }
\end{aligned}
$$

(c) (4 pts) Find all the local minima x_{*} of f, or explain why none exist. Justify your answer using appropriate 1st- or 2nd-order necessary or sufficient conditions.
$H=\nabla^{2} f(x)$ is constimet. it is not positive definite or positivesemi-definite because $h_{11}=-4$.
So 2nd-order necessary condition
shows (single) stationary point is not a local min. There are no local minima (d) $(4 \mathrm{pts})$ Is $p=(-2,1,0)^{\top}$ a descent direction for f at x_{k} from part (a)?

$$
\nabla f\left(x_{k}\right)^{\top} p=[4,5,6]\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]=-8+5+0=-3<0
$$

so yes p is a descent direction
3. Consider the optimization problem

$$
\begin{array}{lc}
\operatorname{minimize} & f(x)=\exp \left(x_{1}^{4}+x_{2}^{2}\right)-x_{1}^{4}+\sin \left(x_{1} x_{2} x_{3}\right) \\
\text { subject to } & 2 x_{1}-2 x_{2}+x_{3}=-1 \\
& x_{1}+4 x_{2} \geq-3 \\
& 7 x_{2}-5 x_{3} \geq-1
\end{array}
$$

(a) (4 pts) Is $x=(-2,0,3)^{\top}$ feasible?

$$
\begin{aligned}
& -4-0+3=-1 \\
& -2+0 \geq-3 \\
& -0-15 \geq-1 \times
\end{aligned}
$$

no (3rd constant
not satificd)
(b) (4 pts) Considering both equality and inequality constraints, which constraints are active and which are inactive at $x=(1,3,3)^{\top}$?
x is feasibk:

since both inequalities
are strict at x, only
the equality constant is active
while
inequality constraints are inactive

Extra Credit. (3 pts) For $x \in \mathbb{R}^{n}$, completely solve the standard-form linear programming problem when there are no equality constraints:
minimize $\quad c^{\top} x$
subject to $x \geq 0$
Claims: (1) if any entry in c \qquad then the problem is unbounded \therefore optima [$c^{\top} \times$ can be as negative as desired]
(2) If $c_{i} \geq 0$ for all i then $x=0$ is an optimum; other optima
(3) if $c_{i}>0$ for all i
unique optimum
4. (10 pts) Consider general minimization problems of the form minimize
$f(x)$
subject to
$a_{j}^{\top} x=b_{j} \quad$ for $j \in \mathcal{E}$
$a_{j}^{\top} x \geq b_{j} \quad$ for $j \in \mathcal{I}$
for given vectors $a_{j} \in \mathbb{R}^{n}$ and scalars b_{j}.
Suppose \bar{x} is a point in the feasible set. Let $\hat{\mathcal{I}}$ be the set of indices $j \in \mathcal{I}$ where the inequality constraint $a_{j}^{\top} x \geq b_{j}$ is active at \bar{x}. Show that if $a_{j}^{\top} p=0$ for all $j \in \mathcal{E}$, and if $a_{j}^{\top} p \geq 0$ for all $j \in \hat{\mathcal{I}}$, then p is a feasible direction.
Proof: Recall p is a feasible direction at \bar{x} if $\bar{x}+\alpha p$ is feasible for all sufficiently small $\alpha>0$. For $j \in \varepsilon, a_{j}^{\top}(\bar{x}+\alpha p)=a_{j}^{\top} \bar{x}+\alpha a_{j}^{\top} p$

$$
=b_{j}+\alpha \cdot 0=b_{j}
$$

So $\bar{x}+\alpha p$ satisfies equality constraints.
For $j \in \hat{\mathcal{L}}, \quad a_{j}^{\top}(\bar{x}+\alpha p)=a_{j}^{\top} \bar{x}+\alpha a_{j}^{\top} p \geqslant b_{j}+0$
so $\hat{\mathcal{\sim}}$ inequality constraints still hold for any $\alpha>0$.
For $j \in \mathcal{I} \backslash \hat{\sim}, \quad a_{j}^{\top}(\bar{x}+\alpha p)=a_{j}^{\top} \bar{x}+\alpha a_{j}^{\top} p$
$>b_{j}+\alpha a_{j}^{\top} p$. This value is nonnegative if either $\frac{-b_{j}}{a_{j}^{\top} p}>0$ or if $0<\alpha<\frac{-b_{j}}{a_{j}^{\top} p}$.
So all caustrints hold if $\alpha>0$ is sufficiently small.
5. (5 pts) Given a matrix $A \in \mathbb{R}^{n \times n}$, define what it means for A to be positive definite.
$x^{\top} A x \geqslant 0$ for all $x \in \mathbb{R}^{n}$
and
$x^{\top} A x>0 \quad$ for $x \neq 0$
6. (a) (4 pts) Define convex set (for a subset S of $\left.\mathbb{R}^{n}\right)$.
if $x, y \in S$ and $0 \leq \alpha \leq 1$ then $\alpha x+(1-\alpha) y \in S$.
(b) (4 pts) Define convex function (for a scalar valued function $f(x)$).
$f: S \rightarrow \mathbb{R}$ is convex if S is convex and if $x, y \in S$ and $0 \leq \alpha \leq 1$ implies $f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)$.
7. (5 pts) For a linear programming problem in standard form, define basic feasible solution.
for $\min c^{\top} x$, a vector x s.t. $A_{x}=b$,

$$
x \geq 0
$$

is a basic feasible solution if $A x=b, x \geq 0$, and columns of A corresponding to $x_{i}>0$ are linearly - independent
8. (a) (6 pts) Sketch the feasible set for the following linear programming problem:

$$
\begin{array}{lr}
\text { minimize } & z=3 x_{1}-9 x_{2} \\
\text { subject to } & 5 x_{1}+2 x_{2} \leq 30 \\
& 3 x_{1}-x_{2} \geq-4 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

$5 x+2 y \leqslant 30$

$$
\begin{gathered}
5 x+2 y=15-\frac{5}{2} x \\
y \leq 4 \\
-3 x+y \leq 4+3 x \\
y \leq 4+3 x \\
\left.15-\frac{5}{2} x=4+5\right) x=\frac{11}{2} x \\
11=\left(3+\frac{5}{2}\right) \Rightarrow y=10 \\
x=2 \Rightarrow y
\end{gathered}
$$

(b) (6 pts) Convert the problem in (a) to standard form.

$$
\min 3 x_{1}-9 x_{2}+0 x_{3}+0 x_{4}
$$

$$
\text { s.t. } 5 x_{1}+2 x_{2}+x_{3}=30
$$

$$
-3 x_{1}+x_{2} \quad+x_{4}=4
$$

$$
x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0
$$

So

$$
A=\left[\begin{array}{cccc}
5 & 2 & 1 & 0 \\
-3 & 1 & 0 & 1
\end{array}\right], b=\left[\begin{array}{c}
30 \\
4
\end{array}\right], c=\left[\begin{array}{c}
-9 \\
0 \\
0
\end{array}\right]
$$

(c) (8 pts) Let x be the basic feasible solution to the standard-form problem, as computed in $\mathbf{8 (b)}$, for which $x_{1}=0$ and $x_{2}=0$. Use the template to complete one iteration of the (reduced) simplex method. At the bottom, fill in the basic and non-basic variables (indices) at the completion of this first iteration.

vealt $\quad B=\{3,2, \quad N=\{1,4$,
9. (5 pts) Given a linear programming problem in standard form

$$
\begin{array}{ll}
\operatorname{minimize} & z=c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

What is the dual problem?
maximize
$b^{\top} y$
st.
$A^{\top} y \leqslant c$
10. (10 pts) Prove: Theorem. Let x_{*} be a local minimizer of a convex optimization problem.

Then x_{*} is also a global minimizer.
${ }^{\text {Proof. Suppose }} x_{*}$ is not a global minimizer,
so there is a feasible $y \in S_{1}^{\text {with } y \neq x^{*}}$ that $f(y)<f\left(x_{x}\right)$.
Let $0<\alpha<1$. Since S is convex,

$$
x_{*}+\alpha\left(y-x_{*}\right)=(1-\alpha) x_{*}+\alpha y \in S \text { is also }
$$

feasible. But since f is convex,

$$
\begin{aligned}
f\left((1-\alpha) x_{*}+\alpha y\right) & \leq(1-\alpha) f\left(x_{*}\right)+\alpha f(y) \\
& <(1-\alpha) f\left(x_{*}\right)+\alpha f\left(x_{*}\right) \\
& =f\left(x_{*}\right) .
\end{aligned}
$$

We can choose $\alpha>0$ so that $x_{*}+\alpha\left(y-x_{*}\right)=z$ is as close to x_{*} as desired, but $f(z)<f\left(x_{*}\right)$. Thus x_{*} is not a local minimizer. By contradiction, x_{*} is a global minimizer. \square

