Name:

\qquad

Midterm Exam

In class. No book. No calculator. $1 / 2$ sheet of notes allowed. (100 points possible)

1. Consider Newton's method to solve the scalar equation $f(x)=0$.
(a) (8 pts) Draw and label a sketch of one step of Newton's method. In particular, your graph should show $y=f(x)$ as a generic curve, then an iterate x_{k}, and then show (graphically) how the next iterate x_{k+1} is determined.
(b) (5 pts) Do one step of Newton's method to solve the equation $x^{3}-x+1=0$, starting at $x_{0}=1$. That is, compute x_{1}.
2. Let $f(x)=4 x_{3} x_{2}+x_{3}^{2}+x_{2}-2 x_{1}^{2}$ for $x \in \mathbb{R}^{3}$.
(a) (4 pts) Compute the gradient and Hessian of f at $x_{k}=(-1,1,1)^{\top} \in \mathbb{R}^{3}$.
(b) (4 pts) Does $f(x)$ have any stationary points? If so, find them.
(c) (4 pts) Find all the local minima x_{*} of f, or explain why none exist. Justify your answer using appropriate 1st- or 2nd-order necessary or sufficient conditions.
(d) (4 pts) Is $p=(-2,1,0)^{\top}$ a descent direction for f at x_{k} from part (a)?
3. Consider the optimization problem

$$
\begin{array}{lc}
\operatorname{minimize} & f(x)=\exp \left(x_{1}^{4}+x_{2}^{2}\right)-x_{1}^{4}+\sin \left(x_{1} x_{2} x_{3}\right) \\
\text { subject to } & 2 x_{1}-2 x_{2}+x_{3}=-1 \\
& x_{1}+4 x_{2} \geq-3 \\
& 7 x_{2}-5 x_{3} \geq-1
\end{array}
$$

(a) (4pts) Is $x=(-2,0,3)^{\top}$ feasible?
(b) (4 pts) Considering both equality and inequality constraints, which constraints are active and which are inactive at $x=(1,3,3)^{\top}$?

Extra Credit. (3 pts) For $x \in \mathbb{R}^{n}$, completely solve the standard-form linear programming problem when there are no equality constraints:

$$
\begin{aligned}
& \operatorname{minimize} \\
& \text { subject to }
\end{aligned} \quad x \geq 0
$$

4. (10 pts) Consider general minimization problems of the form

$$
\begin{array}{cl}
\operatorname{minimize} & f(x) \\
\text { subject to } & a_{j}^{\top} x=b_{j} \quad \text { for } j \in \mathcal{E} \\
& a_{j}^{\top} x \geq b_{j} \quad \text { for } j \in \mathcal{I}
\end{array}
$$

for given vectors $a_{j} \in \mathbb{R}^{n}$ and scalars b_{j}.
Suppose \bar{x} is a point in the feasible set. Let $\hat{\mathcal{I}}$ be the set of indices $j \in \mathcal{I}$ where the inequality constraint $a_{j}^{\top} x \geq b_{j}$ is active at \bar{x}. Show that if $a_{j}^{\top} p=0$ for all $j \in \mathcal{E}$, and if $a_{j}^{\top} p \geq 0$ for all $j \in \hat{\mathcal{I}}$, then p is a feasible direction.
5. (5 pts) Given a matrix $A \in \mathbb{R}^{n \times n}$, define what it means for A to be positive definite.
6. (a) (4 pts) Define convex set (for a subset S of \mathbb{R}^{n}).
(b) (4 pts) Define convex function (for a scalar valued function $f(x)$).
7. (5 pts) For a linear programming problem in standard form, define basic feasible solution.
8. (a) (6 pts) Sketch the feasible set for the following linear programming problem:

$$
\begin{array}{lr}
\text { minimize } & z=3 x_{1}-9 x_{2} \\
\text { subject to } & 5 x_{1}+2 x_{2} \leq 30 \\
& 3 x_{1}-x_{2} \geq-4 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

(b) (6 pts) Convert the problem in (a) to standard form.
(c) (8 pts) Let x be the basic feasible solution to the standard-form problem, as computed in $\mathbf{8 (b)}$, for which $x_{1}=0$ and $x_{2}=0$. Use the template to complete one iteration of the (reduced) simplex method. At the bottom, fill in the basic and non-basic variables (indices) at the completion of this first iteration.

$\mathcal{B}=\{\quad\}, \quad B=[$	$c_{B}=[], \quad \underline{B x_{B}=b} \Longrightarrow x_{B}=\hat{b}=$	[]
$\mathcal{N}=\left\{\begin{array}{l} \\ \end{array}\right]$	$c_{N}=[]$	
$\underline{B^{\top} y=c_{B}} \Longrightarrow y=[$	$\Longrightarrow \quad \underline{\hat{c}_{N}=c_{N}-N^{\top} y}=[]$	
index of $\begin{array}{\|l\|l} \hat{c}_{N} \geq 0 ?: \text { stop with optimum } & \hat{c}_{N} \end{array} \underset{\min }{\rightarrow} \quad t=$	$\square \underline{B \hat{A}_{t}=A_{t}} \Longrightarrow \hat{A}_{t}=\left[\begin{array}{c}\hat{a}_{1, t} \\ \vdots \\ \hat{a}_{m, t}\end{array}\right]=\left[\begin{array}{l} \\ \end{array}\right]$	
$\hat{A}_{t} \leq 0 ?:$ stop, unbounded $\quad\left\{\frac{\hat{b}_{i}}{\hat{a}_{i, t}}\right\}=\{$	index of	

result: $\mathcal{B}=\{\quad\}, \quad \mathcal{N}=\{\quad\}$
9. (5 pts) Given a linear programming problem in standard form

$$
\begin{array}{ll}
\operatorname{minimize} & z=c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

What is the dual problem?
10. (10 pts) Prove: Theorem. Let x_{*} be a local minimizer of a convex optimization problem.

Then x_{*} is also a global minimizer.
Proof.

