Name:

Math 661 Optimization (Bueler)

Friday, 28 October 2022

Midterm Exam

In class. No book. No calculator. 1/2 sheet of notes allowed. (100 points possible)

1. Consider Newton's method to solve the scalar equation f(x) = 0.

(a) (8 pts) Draw and label a sketch of one step of Newton's method. In particular, your graph should show y = f(x) as a generic curve, then an iterate x_k , and then show (graphically) how the next iterate x_{k+1} is determined.

(b) (5 pts) Do one step of Newton's method to solve the equation $x^3 - x + 1 = 0$, starting at $x_0 = 1$. That is, compute x_1 .

- **2.** Let $f(x) = 4x_3x_2 + x_3^2 + x_2 2x_1^2$ for $x \in \mathbb{R}^3$.
- (a) (4 *pts*) Compute the gradient and Hessian of f at $x_k = (-1, 1, 1)^{\top} \in \mathbb{R}^3$.

(b) (4 pts) Does f(x) have any stationary points? If so, find them.

(c) (4 pts) Find all the local minima x_* of f, or explain why none exist. Justify your answer using appropriate 1st- or 2nd-order necessary or sufficient conditions.

(d) (4 pts) Is $p = (-2, 1, 0)^{\top}$ a descent direction for f at x_k from part (a)?

minimize
$$f(x) = \exp(x_1^4 + x_2^2) - x_1^4 + \sin(x_1x_2x_3)$$

subject to $2x_1 - 2x_2 + x_3 = -1$
 $x_1 + 4x_2 \ge -3$
 $7x_2 - 5x_3 \ge -1$

(a) $(4 \ pts)$ Is $x = (-2, 0, 3)^{\top}$ feasible?

(b) (4 pts) Considering both equality and inequality constraints, which constraints are active and which are inactive at $x = (1, 3, 3)^{\top}$?

Extra Credit. (3 *pts*) For $x \in \mathbb{R}^n$, completely solve the standard-form linear programming problem when there are no equality constraints:

 $\begin{array}{ll} \text{minimize} & c^{\top}x\\ \text{subject to} & x \ge 0 \end{array}$

4. (10 pts) Consider general minimization problems of the form

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & a_j^\top x = b_j \quad \text{for } j \in \mathcal{E} \\ & a_j^\top x \ge b_j \quad \text{for } j \in \mathcal{I} \end{array}$$

for given vectors $a_j \in \mathbb{R}^n$ and scalars b_j .

Suppose \bar{x} is a point in the feasible set. Let $\hat{\mathcal{I}}$ be the set of indices $j \in \mathcal{I}$ where the inequality constraint $a_j^{\top}x \geq b_j$ is active at \bar{x} . Show that if $a_j^{\top}p = 0$ for all $j \in \mathcal{E}$, and if $a_j^{\top}p \geq 0$ for all $j \in \hat{\mathcal{I}}$, then p is a feasible direction.

5. (5 pts) Given a matrix $A \in \mathbb{R}^{n \times n}$, define what it means for A to be positive definite.

6. (a) (4 pts) Define convex set (for a subset S of \mathbb{R}^n).

(b) (4 pts) Define convex function (for a scalar valued function f(x)).

7. (5 pts) For a linear programming problem in standard form, define basic feasible solution.

- 6
- 8. (a) (6 pts) Sketch the feasible set for the following linear programming problem:

minimize $z = 3x_1 - 9x_2$
subject to $5x_1 + 2x_2 \le 30$
 $3x_1 - x_2 \ge -4$
 $x_1 \ge 0, x_2 \ge 0$

(b) (6 pts) Convert the problem in (a) to standard form.

(c) (8 pts) Let x be the basic feasible solution to the standard-form problem, as computed in $\mathbf{8}(\mathbf{b})$, for which $x_1 = 0$ and $x_2 = 0$. Use the template to complete one iteration of the (reduced) simplex method. At the bottom, fill in the basic and non-basic variables (indices) at the completion of this first iteration.

$$\begin{array}{c} \mathcal{B} = \left\{ \begin{array}{c} \end{array}\right\}, \quad \mathcal{B} = \left[\begin{array}{c} \end{array}\right], \quad c_B = \left[\begin{array}{c} \end{array}\right], \quad \underline{Bx_B = b} \Longrightarrow x_B = \hat{b} = \left[\end{array}\right] \\ \mathcal{N} = \left\{ \begin{array}{c} \end{array}\right\}, \quad \mathcal{N} = \left[\begin{array}{c} \end{array}\right], \quad \mathcal{C}_N = \left[\end{array}\right] \\ \underline{B^\top y = c_B} \Longrightarrow y = \left[\end{array}\right], \quad c_N = \left[\end{array}\right] \\ \underline{B^\top y = c_B} \Longrightarrow y = \left[\end{array}\right] \implies \qquad \underline{\hat{c}_N = c_N - N^\top y} = \left[\end{array}\right] \\ \hline \\ \hline \\ \hline \\ \underline{\hat{c}_N \ge 0?: \text{ stop with optimum}} \quad \hat{c}_N \xrightarrow{\text{index of}} t = \boxed{} \rightarrow \underline{B\hat{A}_t = A_t} \Longrightarrow \hat{A}_t = \begin{bmatrix} \hat{a}_{1,t} \\ \vdots \\ \hat{a}_{m,t} \end{bmatrix} = \left[\end{array}\right] \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \underline{\hat{A}_t \le 0?: \text{ stop, unbounded}} \quad \left\{ \frac{\hat{b}_t}{\hat{a}_{i,t}} \right\} = \left\{ \begin{array}{c} \end{array}\right\} \qquad \begin{array}{c} \text{index of} \\ \Rightarrow \\ \text{min over } \hat{a}_{i,t} > 0 \end{array}$$

result: $\mathcal{B} = \{ \}, \quad \mathcal{N} = \{ \}$

minimize	$z = c^\top x$
subject to	Ax = b
	x > 0.

What is the dual problem?

10. (10 pts) Prove: **Theorem.** Let x_* be a local minimizer of a convex optimization problem. Then x_* is also a global minimizer.

Proof.