Name:

\qquad

Midterm Exam

In class. No book. No calculator. $1 / 2$ sheet of notes allowed.
(100 points possible)

1. Let $f(x)=x_{1}^{3}+x_{1}^{2} x_{2}+x_{3}$ for $x \in \mathbb{R}^{3}$.
(a) (10 pts) Compute the gradient and Hessian of f at $x_{k}=(-1,1,1)^{\top} \in \mathbb{R}^{3}$.
(b) (5 pts) Show that f has no local minima. (Hint: Explain using an appropriate 1st- or 2ndorder necessary or sufficient condition.)
(c) (5 pts) Is $p=(1,2,3)^{\top}$ a descent direction for f at x_{k} from part (a)?
2. (a) (5 pts) Does the sequence of real numbers defined by $x_{0}=1$ and

$$
x_{k+1}=\frac{1}{k+1} x_{k}
$$

for $k=0,1,2, \ldots$, converge to $x_{*}=0$ superlinearly? Show why your answer is true.
(b) (5 pts) Show that the sequence

$$
x_{k}=3^{\left(-2^{k}\right)}
$$

converges quadratically. (Hint: Start by identifying the point x_{*} to which the sequence converges.)
3. (10 pts) Consider $f(x)=\frac{1}{4} x^{4}-x^{2}+2 x$ and $x_{0}=1$. Compute x_{1} from Newton's method for the optimization problem $\min _{x \in \mathbb{R}} f(x)$.

Extra Credit. (3 pts) Consider the equation $f(x)=0$ where $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ is twice continuously differentiable. Assume that the iterates x_{k} from Newton's method converge to x_{*} satisfying the equation. Also assume that $f^{\prime}\left(x_{*}\right) \neq 0$. Show that $x_{k} \rightarrow x_{*}$ quadratically. (Use space on the back page, or a separate sheet of paper.)
4. Consider the optimization problem

$$
\begin{array}{lc}
\operatorname{minimize} & f(x)=\cos \left(x_{1}\right)-x_{2}^{3}+\exp \left(x_{1}^{4}+x_{2}^{2}\right) \\
\text { subject to } & 2 x_{1}-4 x_{2}+x_{3}=-1 \\
& x_{1}+4 x_{2} \geq-3 \\
& 7 x_{2}-5 x_{3} \geq 2
\end{array}
$$

(a) (3 pts) Is $x=(1,1,1)^{\top}$ feasible?
(b) (3 pts) Which constraints are active and which are inactive at $x=(1,1,1)^{\top}$?
(c) (10 pts) Consider general problems of the same form, with linear equality constraints $a_{j}^{\top} x=b_{j}$ for $j \in \mathcal{E}$ and inequality constraints $a_{i}^{\top} x \geq b_{i}$ for $i \in \mathcal{I}$, and assume \bar{x} is feasible. Show that if $a_{j}^{\top} p=0$ for all $j \in \mathcal{E}$ and $a_{i}^{\top} p \geq 0$ for all $i \in \hat{\mathcal{I}}$, where $\hat{\mathcal{I}}$ is the set of indices where the constraint $a_{i}^{\top} x \geq b_{i}$ is active at \bar{x}, then p is a feasible direction.
(d) (4 pts) Fill in the blanks: For the same general class of problems as described in (c), and assuming x is feasible and that p is a feasible direction, the \qquad determines the maximum value of α so that $x+\alpha p$ is feasible. Only the inequality constraints which are
\qquad are needed for this test.
5. (a) (8 pts) Sketch the feasible set for the following linear programming problem:

$$
\begin{array}{lr}
\text { minimize } & z=-2 x_{1}+x_{2} \\
\text { subject to } & -2 x_{1}+3 x_{2} \leq 3 \\
& -x_{1}+x_{2} \geq-1 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

(b) (7 pts) Convert the problem in (a) to standard form.
(c) (10 pts) Let x be the basic feasible solution, to the problem in (b), for which $x_{1}=0$ and $x_{2}=0$. Use the template to complete one iteration of the (reduced) simplex method. In particular, at bottom, fill in the basic and non-basic variables (indices) at the completion of this first iteration.

6. (a) (5 pts) Given a linear programming problem in standard form

$$
\begin{array}{ll}
\operatorname{minimize} & z=c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

What is the dual problem?
(b) (5 pts) Fill in the blank to state the following theorem and prove the theorem. Please justify any inequalities. Theorem (weak duality). Let x be a feasible point for the primal problem in standard form, and let y be a feasible point for the dual problem. Then

Proof.
7. (5 pts) Given a matrix $A \in \mathbb{R}^{n \times n}$, define what it means for A to be positive definite.

BLANK PAGE FOR SCRATCH WORK. CLEARLY-LABEL ANYTHING YOU WANT TO BE GRADED

