Name:

Math 661 Optimization (Bueler)

Friday, 26 October 2018

Midterm Exam

In class. No book. No calculator. 1/2 sheet of notes allowed. (100 points possible)

1. Let $f(x) = x_1^3 + x_1^2 x_2 + x_3$ for $x \in \mathbb{R}^3$.

(a) (10 pts) Compute the gradient and Hessian of f at $x_k = (-1, 1, 1)^{\top} \in \mathbb{R}^3$.

(b) $(5 \ pts)$ Show that f has no local minima. (*Hint: Explain using an appropriate 1st- or 2nd-order necessary or sufficient condition.*)

(c) (5 pts) Is $p = (1, 2, 3)^{\top}$ a descent direction for f at x_k from part (a)?

2. (a) (5 pts) Does the sequence of real numbers defined by $x_0 = 1$ and

$$x_{k+1} = \frac{1}{k+1}x_k,$$

for k = 0, 1, 2, ..., converge to $x_* = 0$ superlinearly? Show why your answer is true.

(b) (5 pts) Show that the sequence

$$x_k = 3^{(-2^k)}$$

converges quadratically. (Hint: Start by identifying the point x_* to which the sequence converges.)

3. (10 pts) Consider $f(x) = \frac{1}{4}x^4 - x^2 + 2x$ and $x_0 = 1$. Compute x_1 from Newton's method for the optimization problem $\min_{x \in \mathbb{R}} f(x)$.

Extra Credit. (3 pts) Consider the equation f(x) = 0 where $f : \mathbb{R}^1 \to \mathbb{R}^1$ is twice continuously differentiable. Assume that the iterates x_k from Newton's method converge to x_* satisfying the equation. Also assume that $f'(x_*) \neq 0$. Show that $x_k \to x_*$ quadratically. (Use space on the back page, or a separate sheet of paper.)

minimize
$$f(x) = \cos(x_1) - x_2^3 + \exp(x_1^4 + x_2^2)$$

subject to $2x_1 - 4x_2 + x_3 = -1$
 $x_1 + 4x_2 \ge -3$
 $7x_2 - 5x_3 \ge 2$

(a) (3 pts) Is $x = (1, 1, 1)^{\top}$ feasible?

(b) (3 pts) Which constraints are active and which are inactive at $x = (1, 1, 1)^{\top}$?

(c) $(10 \ pts)$ Consider general problems of the same form, with linear equality constraints $a_j^{\top} x = b_j$ for $j \in \mathcal{E}$ and inequality constraints $a_i^{\top} x \ge b_i$ for $i \in \mathcal{I}$, and assume \bar{x} is feasible. Show that if $a_j^{\top} p = 0$ for all $j \in \mathcal{E}$ and $a_i^{\top} p \ge 0$ for all $i \in \hat{\mathcal{I}}$, where $\hat{\mathcal{I}}$ is the set of indices where the constraint $a_i^{\top} x \ge b_i$ is active at \bar{x} , then p is a feasible direction.

(d) (4 pts) Fill in the blanks: For the same general class of problems as described in (c), and assuming x is feasible and that p is a feasible direction, the ______ determines the maximum value of α so that $x + \alpha p$ is feasible. Only the inequality constraints which are ______ are needed for this test.

5. (a) (8 pts) Sketch the feasible set for the following linear programming problem:

minimize
$$z = -2x_1 + x_2$$

subject to $-2x_1 + 3x_2 \le 3$
 $-x_1 + x_2 \ge -1$
 $x_1 \ge 0, x_2 \ge 0$

(b) (7 pts) Convert the problem in (a) to standard form.

(c) (10 pts) Let x be the basic feasible solution, to the problem in (b), for which $x_1 = 0$ and $x_2 = 0$. Use the template to complete one iteration of the (reduced) simplex method. In particular, at bottom, fill in the basic and non-basic variables (indices) at the *completion* of this first iteration.

6. (a) (5 pts) Given a linear programming problem in standard form

minimize	$z = c^\top x$
subject to	Ax = b
	$x \ge 0.$

What is the dual problem?

(b) (5 pts) Fill in the blank to state the following theorem and prove the theorem. Please justify any inequalities. **Theorem** (weak duality). Let x be a feasible point for the primal problem in standard form, and let y be a feasible point for the dual problem. Then

Proof.

7. (5 pts) Given a matrix $A \in \mathbb{R}^{n \times n}$, define what it means for A to be positive definite.

BLANK PAGE FOR SCRATCH WORK. CLEARLY-LABEL ANYTHING YOU WANT TO BE GRADED