Solutions to Final Exam

F1. (a) The sketch below also shows the sequence of points generated by applying the simplex method (part (c)).

(b) It is helpful to first put the problem in form

(1) minimize
$$z = c^{\top} x$$

subject to $Ax \le b$
 $x \ge 0$

where $b \ge 0$. To do so one must simply multiply the first and third constraints by -1. Then I put the problem in standard form

(2) minimize
$$z = c^{\top} x$$

subject to $Ax = b$
 $x \ge 0$

by adding slack variables x_3, x_4, x_5, x_6 . The standard form has these data:

$A = \begin{bmatrix} 1 & -1 & 1 & & \\ -2 & 1 & 1 & & \\ -1 & 2 & & 1 & \\ 1 & 1 & & & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 3 \\ 1 \\ 5 \\ 7 \end{bmatrix}, \qquad c = \begin{bmatrix} -2 & -2 & -2 & -2 \\ -2 & -2 & -2 & -2 \\ -2 & -2 &$	$ \begin{array}{c} -2 \\ -3 \\ 0 \\ $
--	---

(c) I applied the code mysimplex.m to this problem, using the form (2). For these problems the addition of *m* slack variables, i.e. one for each scalar inequality constraint, puts the problem in standard form *and* allows one to find a basic feasible solution by setting the original variables to zero; the entries of *b* give the values of the slack variables. The code does this internally.

Applying the code looked like this:

```
>> A = [1 -1; -2 1; -1 2; 1 1];
>> b = [3 1 5 7]';
>> c = [-2 -3]';
>> [x,z] = mysimplex(c,A,b,true)
...
```

With a fourth argument of true, the code print out its iterates. In the original variables:

$$(0,0) \to (0,1) \to (1,3) \to (3,4)$$

These transitions are shown as double arrows in the sketch.

F2. (a) We are minimizing $z = c^{\top}x$ subject to the constraint that the length of the vector x is one: ||x|| = 1. That is, we are minimizing over the unit sphere S. On the other hand, the objective function is an inner product, so when $x \in S$ then

$$z = c^{\top}x = \|c\|\|x\|\cos\theta = \|c\|\cos\theta$$

where θ is the angle between *c* and *x*. To make the right side as small as possible we need $\theta = \pi$, that is, *x* should point opposite to *c*. Thus the solution is a unit vector opposite to *c*: $x_* = -c/||c||$. A 2D case is illustrated in the sketch below.

(b) For this problem $\lambda \in \mathbb{R}^1$; there is a single Lagrange multiplier. The Lagrangian is

$$\mathcal{L}(x,\lambda) = c^{\top}x - \lambda(\|x\|^2 - 1).$$

The first-order optimality conditions from Theorem 14.15 are

(3)
$$\nabla_x \mathcal{L}(x,\lambda) = c - 2\lambda x = 0$$

along with feasibility $||x||^2 = 1$.

(c) Equation (3) says that an optimal solution x_* is parallel to c, i.e. $x_* = \frac{1}{2\lambda}c$. Applying feasibility gives

$$1 = \|x_*\| = \frac{1}{|2\lambda_*|} \|c\|$$

so that $|\lambda_*| = ||c||/2$ or equivalently $\lambda_* = \pm ||c||/2$. Thus first-order optimality gives two possible optimal points

$$(x_*, \lambda_*) = \left(+\frac{c}{\|c\|}, +\frac{\|c\|}{2}\right), \left(-\frac{c}{\|c\|}, -\frac{\|c\|}{2}\right).$$

(*Completing the second-order conditions, as follows, is* not *requested or required.*)

Note that the first (positive) solution fails the second-order necessary condition. In fact the Hessian of the Lagrangian is $\nabla_{xx}^2 \mathcal{L}(x,\lambda) = -2\lambda I$. At the positive solution this is a negative multiple of the identity. Regardless of the choice of null-space matrix $Z(x_*)$, the matrix $Z(x_*)^\top \nabla_{xx}^2 \mathcal{L}(x,\lambda) Z(x_*)$ is not positive semi-definite. However, at the negative solution the Hessian is a positive multiple of the identity, and thus the second-order sufficient conditions hold (regardless of which null space basis matrix $Z(x_*)$ is chosen).

F3. (a) I made the following sketch which includes the feasible set *S*, the contours of *f*, the location of the unconstrained minimum at $(1, -1)^{\top}$, the solution $x_* = (1, 0)^{\top}$, and the points *A*, *B*, *C* considered in part (b).

Informally, the solution is at x_* because the gradient of f is parallel to the gradient of the active constraint there. One cannot descend further because the "fence" of the constraint $g_2(x) \ge 0$ stops steepest-descent motion toward the unconstrained minimum. Moving along the boundary also does not allow decrease.

(Formally, from (b) below, at x_* we have $(\lambda_*)_1 = 0$ and $(\lambda_*)_2 = 2$, so $\nabla f(x_*) = 2\nabla g_2(x_*)$ and the gradients are parallel and pointed in the same direction.)

(b) The problem has two constraints " $g_i(x) \ge 0$ ": $g_1(x) = 4 - x_1^2 - x_2^2$ and $g_2(x) = x_2$. The Lagrangian is

$$\mathcal{L}(x,\lambda) = f(x) - \lambda^{\top} g(x) = (x_1 - 1)^2 + (x_2 + 1)^2 - \lambda_1 (4 - x_1^2 - x_2^2) - \lambda_2 x_2$$

with *x*-gradient

$$\nabla_x \mathcal{L}(x,\lambda) = \begin{bmatrix} 2(x_1-1) + 2\lambda_1 x_1\\ 2(x_2+1) + 2\lambda_1 x_2 - \lambda_2 \end{bmatrix}$$

For each point we will determine whether we can solve the first-order optimality conditions from Theorem 14.18, namely

$$abla_x \mathcal{L}(x, \lambda) = 0$$

 $\lambda \ge 0$
 $\lambda^\top g(x) = 0$

Note that at each point we have values for x_1, x_2 so the unknowns are λ_1, λ_2 . We have three scalar equations to solve, namely the first and last of the above conditions.

- $A = (0,0)^{\top}$: At *A* only the second constraint is active. The equations we want to solve simplify to -2 = 0 and $2 \lambda_2 = 0$ and $4\lambda_1 + 0\lambda_2 = 0$. There is no solution because $-2 \neq 0$. (At *A* the gradient of *f* is not parallel to the gradient of the active (second) constraint.)
- $B = (0,2)^{\top}$: At *B* only the first constraint is active. The equations we want to solve simplify to $-2 = 0, 6 + 4\lambda_1 \lambda_2 = 0$, and $0\lambda_1 + 2\lambda_2 = 0$. Again there is no solution because $-2 \neq 0$. (At *B* the gradient of *f* is not parallel to the gradient of the active (first) constraint.)
- $C = (1,0)^{\top}$: At *C* only the second constraint is active. The equations we want to solve simplify to $0 + 2\lambda_1 = 0$ and $2 \lambda_2 = 0$ and $3\lambda_1 + 0\lambda_2 = 0$. A solution is $\lambda_1 = 0$ and $\lambda_2 = 2$. Note $\lambda \ge 0$. Thus $C = x_*$ satisfies the necessary conditions in Theorem 14.18.

F4. (a) I generated the figure below. (See the last part of gridsearch.m.) By rotating the figure around it seems the global minimum can be roughly estimated: $f(x_*) \approx -3$.

(b) I wrote two codes. The first evaluates the objective function and its gradient. We need a function like this when we apply sdbt.m:

```
function [f,df] = f4fcn(x)
% F4FCN The objective function, and its gradient, for F4 on the Final Exam
f = 3.0 * sin(x(1)) + cos(x(2)) + 0.05 * (x(1)^2 - x(1)*x(2) + 2.0*x(2)^2);
if nargout > 1
    df = [3.0*cos(x(1)) + 0.05*(2.0*x(1)-x(2));
        -sin(x(2)) + 0.05*(-x(1)+4.0*x(2))];
end
```

The second code does the grid search. It requires sdbt.m to be on the current path. (Your code does not have to be a general 2D grid search like this; it can be special to this particular problem.)

```
gridsearch.m
```

```
function gridsearch(f,x1,x2,tol)
% GRIDSEARCH Solve 2D global minimization problems by combining a grid search
% with steepest descent (SDBT).
% Usage:
÷
    gridsearch(f,x1,x2,tol)
응
 where
÷
    f
         = handle for function which returns f and gradient of f (see SDBT)
        = list of x_1 coordinates for initial points
ŝ
    x1
2
    x2
        = ...
                  x_2 ...
    tol = tolerance for SDBT [default: 1.0e-6]
8
% Example: problem F4 does
% >> gridsearch(@f4fcn,-9:10,-9:10,1.0e-6)
% Requires: SDBT
if nargin < 4, tol = 1.0e-6; end
\% search, saving all f-values, and running minimum of f(x), and best x
```

```
fprintf('searching using a grid of %d initial points x_0 \dots n', \dots
       length(x1) * length(x2))
fval = zeros(20, 20);
fstar = 1.0e6; % larger than max
for j = 1: length(x1)
    for k = 1:length(x2)
       x0 = [x1(j); x2(k)];
       xk = sdbt(x0, f, tol, 100); % set maxiters = 100 (for speed)
       fval(j,k) = f(xk);
        if fval(j,k) < fstar
           fstar = fval(j,k);
           xstar = xk;
        end
    end
end
fprintf('global minimum: f(%.6f,%.6f) = %.6f\n',xstar(1),xstar(2),fstar)
% first draw contour map of solution
figure(1), clf, hold on
N = 201;
x1f = linspace(min(x1),max(x1),N); % finer grid for contour/mesh plotting
x2f = linspace(min(x2), max(x2), N);
zz = zeros(N, N);
for j = 1:N
   for k = 1:N
       zz(j,k) = f([x1f(j); x2f(k)]);
    end
end
contour(x1f,x2f,zz','k')
% next show xstar and those x0 that yielded xstar
plot(xstar(1), xstar(2), 'r*', 'markersize', 12)
for j = 1:length(x1)
    for k = 1:length(x2)
       if fval(j,k) <= fstar + tol
           plot(x1(j),x2(k),'bo','markersize',6)
       end
    end
end
axis([-10.5 10.5 -10.5 10.5]), axis tight, grid on
xlabel('x_1','fontsize',16), ylabel('x_2','fontsize',16)
% draw surface (mesh) plot of objective function
figure(2), clf, hold on
mesh(x1f,x2f,zz')
view(3), axis tight
xlabel('x_1','fontsize',16), ylabel('x_2','fontsize',16)
zlabel('f(x)','fontsize',16)
```

Running this code looks like this:

```
>> gridsearch(@f4fcn,-9:10,-9:10,5.0e-7)
searching using a grid of 400 initial points x_0 ...
global minimum: f(-1.563167,-2.668592) = -3.264378
```

Note that the second and third arguments are lists of x_1 and x_2 coordinates, respectively, of the initial points x_0 . For tol you can choose any value around 10^{-6} to get about 6 digit accuracy.

The code produces two figures, namely the surface plot above and the contour map below which shows the computed global minimum x_* (large star) and the x_0 values (small circles) which lead to x_* . In this case we see that a rectangle of 60 values of x_0 lead to the solution x_* .

One might observe that a coarser grid of x_0 will do just fine. This is true! For example

```
>> gridsearch(@f4fcn,-10:2:10,-10:2:10,5.0e-7)
```

finds the same minimum to the same accuracy using 1/4 the work. However, too coarse and one misses the global minimum:

```
>> gridsearch(@f4fcn,-10:12:14,-10:12:14,5.0e-7)
searching using a grid of 9 initial points x_0 ...
global minimum: f(4.605414,2.804601) = -2.725351
```


F6. (a) Given $x \in \mathbb{R}^n$, as usual we define g(x) to be a column vector formed from the numbers $g_1(x), \ldots, g_\ell(x)$. For a feasible point x also define h(x) to be the column vector formed from all constraints $h_i(x)$ and $\tilde{h}(x)$ to be the column vector formed from the constraints $h_i(x)$ which are active at x, i.e. for which $h_i(x) = 0$. In these terms we can define

Definition. x_* is a *regular point of the constraints* if the matrix

$$\begin{bmatrix} \nabla g(x_*) & \nabla \tilde{h}(x_*) \end{bmatrix}$$

has linearly independent columns.

Just as in the textbook's definition on page 503, the inactive inequality constraints are not relevant in this definition.

The Lagrangian for this problem is

$$\mathcal{L}(x,\lambda,\mu) = f(x) - \sum_{i=1}^{\ell} \lambda_i g_i(x) - \sum_{j=1}^{m} h_j(x)$$
$$= f(x) - \lambda^\top g(x) - \mu^\top h(x)$$

where $\lambda \in \mathbb{R}^{\ell}$ and $\mu \in \mathbb{R}^{m}$. Note that h(x), not $\tilde{h}(x)$ is used here.

(b) The following theorem, which is the full Karush-Kuhn-Tucker theorem,¹ states the first-order necessary conditions.

Theorem. Suppose x_* is a regular point of the constraints and a local minimizer. Then there exist vectors $\lambda_* \in \mathbb{R}^{\ell}$ and $\mu_* \in \mathbb{R}^m$ so that

$g(x_*) = 0$	primal feasibility: equality constraints
$h(x_*) \ge 0$	primal feasibility: inequality constraints
$\nabla_x \mathcal{L}(x_*, \lambda_*, \mu_*) = 0$	stationarity
$\mu_* \ge 0$	dual feasibility
$\mu_*^\top h(x_*) = 0$	complementary slackness

¹en.wikipedia.org/wiki/Karush-Kuhn-Tucker_conditions

You were not asked to prove this, just to state it. Note that the stationarity condition, i.e. the first-order condition itself, can be written

$$\nabla f(x_*) = \nabla g(x_*)\lambda_* + \nabla h(x_*)\mu_*$$

That is, the gradient of f at the solution can be written as a linear combination of the gradients of the constraints. When there are inequality constraints, however, by complementary slackness we expect some of their corresponding multipliers μ_i to be zero.

F7. (I have written the solution as a theorem, but this is just a stylistic choice. Because the feasible set is convex and the objective function is both strictly-convex and coercive $(f(x) \to \infty \text{ as } ||x|| \to \infty)$, this minimization problem has a unique global solution, which we find. I used Lagrange-multiplier techniques (e.g. equation (14.2)), but if you use a null-space matrix then it is easiest to go to section 3.3 and find that you can choose $Z = I - A^{\top} (AA^{\top})^{-1}A$. Finally, note that MATLAB computes this x_* if you do "A \ b" when A is $m \times n$ and m < n, and $b \in \mathbb{R}^m$; try it out!)

Theorem. Suppose $A \in \mathbb{R}^{m \times n}$ has full row rank, so $m \le n$, and suppose $b \in \mathbb{R}^m$. The point

(4)
$$x_* = A^\top (AA^\top)^{-1} b$$

solves the problem

(5) minimize
$$f(x) = \frac{1}{2}x^{\top}x$$

subject to $Ax = b$

Proof. Suppose \tilde{x} is a point which satisfies $A\tilde{x} = b$ and which is a local minimizer of f(x). Note $\nabla f(x) = x$. By Lemma 14.2, but using the Lagrange multipliers form in equation (14.2), there is a vector $\tilde{\lambda} \in \mathbb{R}^m$ so that the local minimizer \tilde{x} satisfies

$$\tilde{x} = A^{\dagger} \lambda$$

(The Lagrangian for this problem is $\mathcal{L}(x,\lambda) = \frac{1}{2}x^{\top}x - \lambda^{\top}(Ax - b)$ so $\nabla_x \mathcal{L}(x,\lambda) = x - A^{\top}\lambda$.)

That is, we have this system of equations describing \tilde{x} and $\tilde{\lambda}$:

Solving the first equation for \tilde{x} and substituting into the second equation gives

$$AA^{\top}\tilde{\lambda} = b$$

Because A has full row rank it follows that AA^{\top} is positive definite, thus invertible,² so

$$\tilde{\lambda} = (AA^{\top})^{-1}b.$$

From the first equation in (6) we now get $\tilde{x} = A^{\top} (AA^{\top})^{-1}b$. Thus \tilde{x} is the point x_* given by (4).

On the other hand, x_* satisfies the sufficient conditions in Lemma 14.3. Note that $\nabla^2 f(x) = I$. Suppose *Z* is a null space basis matrix for *A*, so *Z* has full column rank, and then $Z^{\top}Z$ is positive definite.³ But then $Z^{\top}\nabla^2 f(x_*)Z = Z^{\top}IZ = Z^{\top}Z$ is positive definite. Thus x_* is a strict local minimizer of the problem.

²This fact was made explicit in class, and it is Exercise 3.4 in section 3.3.

³This is really the same fact again, but it is Exercise 3.5 in section 3.3.