
Math 661 Optimization (Bueler) 13 December 2018

Solutions to Final Exam

F1. (a) The sketch below also shows the sequence of points generated by applying the
simplex method (part (c)).

x1

x2

(0, 0)

(0, 1)

(1, 3)

(3, 4)

(5, 2)

(3, 0)

S

(b) It is helpful to first put the problem in form

minimize z = c⊤x(1)

subject to Ax ≤ b

x ≥ 0

where b ≥ 0. To do so one must simply multiply the first and third constraints by −1.
Then I put the problem in standard form

minimize z = c⊤x(2)

subject to Ax = b

x ≥ 0

by adding slack variables x3, x4, x5, x6. The standard form has these data:

A =


1 −1 1

−2 1 1

−1 2 1

1 1 1

 , b =


3

1

5

7

 , c =



−2

−3

0

0

0

0


(c) I applied the code mysimplex.m to this problem, using the form (2). For these problems the
addition of m slack variables, i.e. one for each scalar inequality constraint, puts the problem in
standard form and allows one to find a basic feasible solution by setting the original variables
to zero; the entries of b give the values of the slack variables. The code does this internally.

Applying the code looked like this:

>> A = [1 -1; -2 1; -1 2; 1 1];

>> b = [3 1 5 7]’;

>> c = [-2 -3]’;

>> [x,z] = mysimplex(c,A,b,true)

...

2

With a fourth argument of true, the code print out its iterates. In the original variables:

(0, 0) → (0, 1) → (1, 3) → (3, 4)

These transitions are shown as double arrows in the sketch.

F2. (a) We are minimizing z = c⊤x subject to the constraint that the length of the vector
x is one: ∥x∥ = 1. That is, we are minimizing over the unit sphere S. On the other hand, the
objective function is an inner product, so when x ∈ S then

z = c⊤x = ∥c∥∥x∥ cos θ = ∥c∥ cos θ

where θ is the angle between c and x. To make the right side as small as possible we need
θ = π, that is, x should point opposite to c. Thus the solution is a unit vector opposite to c:
x∗ = −c/∥c∥. A 2D case is illustrated in the sketch below.

x1

x2

c

x∗

S

(b) For this problem λ ∈ R1; there is a single Lagrange multiplier. The Lagrangian is

L(x, λ) = c⊤x− λ(∥x∥2 − 1).

The first-order optimality conditions from Theorem 14.15 are

(3) ∇xL(x, λ) = c− 2λx = 0

along with feasibility ∥x∥2 = 1.

(c) Equation (3) says that an optimal solution x∗ is parallel to c, i.e. x∗ = 1
2λc. Applying feasi-

bility gives

1 = ∥x∗∥ =
1

|2λ∗|
∥c∥

so that |λ∗| = ∥c∥/2 or equivalently λ∗ = ±∥c∥/2. Thus first-order optimality gives two possi-
ble optimal points

(x∗, λ∗) =

(
+

c

∥c∥
,+

∥c∥
2

)
,

(
− c

∥c∥
,−∥c∥

2

)
.

(Completing the second-order conditions, as follows, is not requested or required.)
Note that the first (positive) solution fails the second-order necessary condition. In fact

the Hessian of the Lagrangian is ∇2
xxL(x, λ) = −2λI . At the positive solution this is a neg-

ative multiple of the identity. Regardless of the choice of null-space matrix Z(x∗), the matrix
Z(x∗)

⊤∇2
xxL(x, λ)Z(x∗) is not positive semi-definite. However, at the negative solution the

Hessian is a positive multiple of the identity, and thus the second-order sufficient conditions
hold (regardless of which null space basis matrix Z(x∗) is chosen).

3

F3. (a) I made the following sketch which includes the feasible set S, the contours of f , the
location of the unconstrained minimum at (1,−1)⊤, the solution x∗ = (1, 0)⊤, and the points
A,B,C considered in part (b).

x1

x2

S

A

B

x∗ = C

Informally, the solution is at x∗ because the gradient of f is parallel to the gradient of the
active constraint there. One cannot descend further because the “fence” of the constraint
g2(x) ≥ 0 stops steepest-descent motion toward the unconstrained minimum. Moving along
the boundary also does not allow decrease.

(Formally, from (b) below, at x∗ we have (λ∗)1 = 0 and (λ∗)2 = 2, so ∇f(x∗) = 2∇g2(x∗) and the
gradients are parallel and pointed in the same direction.)

(b) The problem has two constraints “gi(x) ≥ 0”: g1(x) = 4 − x21 − x22 and g2(x) = x2. The
Lagrangian is

L(x, λ) = f(x)− λ⊤g(x) = (x1 − 1)2 + (x2 + 1)2 − λ1(4− x21 − x22)− λ2x2

with x-gradient

∇xL(x, λ) =
[

2(x1 − 1) + 2λ1x1
2(x2 + 1) + 2λ1x2 − λ2

]
For each point we will determine whether we can solve the first-order optimality conditions
from Theorem 14.18, namely

∇xL(x, λ) = 0

λ ≥ 0

λ⊤g(x) = 0

Note that at each point we have values for x1, x2 so the unknowns are λ1, λ2. We have three
scalar equations to solve, namely the first and last of the above conditions.

A = (0, 0)⊤: At A only the second constraint is active. The equations we want to solve simplify to
−2 = 0 and 2 − λ2 = 0 and 4λ1 + 0λ2 = 0. There is no solution because −2 ̸= 0. (At A
the gradient of f is not parallel to the gradient of the active (second) constraint.)

B = (0, 2)⊤: At B only the first constraint is active. The equations we want to solve simplify to
−2 = 0, 6+4λ1−λ2 = 0, and 0λ1+2λ2 = 0. Again there is no solution because −2 ̸= 0.
(At B the gradient of f is not parallel to the gradient of the active (first) constraint.)

C = (1, 0)⊤: At C only the second constraint is active. The equations we want to solve simplify to
0 + 2λ1 = 0 and 2 − λ2 = 0 and 3λ1 + 0λ2 = 0. A solution is λ1 = 0 and λ2 = 2. Note
λ ≥ 0. Thus C = x∗ satisfies the necessary conditions in Theorem 14.18.

4

F4. (a) I generated the figure below. (See the last part of gridsearch.m.) By rotating the
figure around it seems the global minimum can be roughly estimated: f(x∗) ≈ −3.

(b) I wrote two codes. The first evaluates the objective function and its gradient. We need a
function like this when we apply sdbt.m:

f4fcn.m

function [f,df] = f4fcn(x)

% F4FCN The objective function, and its gradient, for F4 on the Final Exam

f = 3.0 * sin(x(1)) + cos(x(2)) + 0.05 * (x(1)ˆ2 - x(1)*x(2) + 2.0*x(2)ˆ2);

if nargout > 1

df = [3.0*cos(x(1)) + 0.05*(2.0*x(1)-x(2));

-sin(x(2)) + 0.05*(-x(1)+4.0*x(2))];

end

The second code does the grid search. It requires sdbt.m to be on the current path. (Your
code does not have to be a general 2D grid search like this; it can be special to this particular problem.)

gridsearch.m

function gridsearch(f,x1,x2,tol)

% GRIDSEARCH Solve 2D global minimization problems by combining a grid search

% with steepest descent (SDBT).

% Usage:

% gridsearch(f,x1,x2,tol)

% where

% f = handle for function which returns f and gradient of f (see SDBT)

% x1 = list of x_1 coordinates for initial points

% x2 = ... x_2 ...

% tol = tolerance for SDBT [default: 1.0e-6]

% Example: problem F4 does

% >> gridsearch(@f4fcn,-9:10,-9:10,1.0e-6)

% Requires: SDBT

if nargin < 4, tol = 1.0e-6; end

% search, saving all f-values, and running minimum of f(x), and best x

5

fprintf(’searching using a grid of %d initial points x_0 ...\n’,...

length(x1)*length(x2))

fval = zeros(20,20);

fstar = 1.0e6; % larger than max

for j = 1:length(x1)

for k = 1:length(x2)

x0 = [x1(j); x2(k)];

xk = sdbt(x0,f,tol,100); % set maxiters = 100 (for speed)

fval(j,k) = f(xk);

if fval(j,k) < fstar

fstar = fval(j,k);

xstar = xk;

end

end

end

fprintf(’global minimum: f(%.6f,%.6f) = %.6f\n’,xstar(1),xstar(2),fstar)

% first draw contour map of solution

figure(1), clf, hold on

N = 201;

x1f = linspace(min(x1),max(x1),N); % finer grid for contour/mesh plotting

x2f = linspace(min(x2),max(x2),N);

zz = zeros(N,N);

for j = 1:N

for k = 1:N

zz(j,k) = f([x1f(j); x2f(k)]);

end

end

contour(x1f,x2f,zz’,’k’)

% next show xstar and those x0 that yielded xstar

plot(xstar(1),xstar(2),’r*’,’markersize’,12)

for j = 1:length(x1)

for k = 1:length(x2)

if fval(j,k) <= fstar + tol

plot(x1(j),x2(k),’bo’,’markersize’,6)

end

end

end

axis([-10.5 10.5 -10.5 10.5]), axis tight, grid on

xlabel(’x_1’,’fontsize’,16), ylabel(’x_2’,’fontsize’,16)

% draw surface (mesh) plot of objective function

figure(2), clf, hold on

mesh(x1f,x2f,zz’)

view(3), axis tight

xlabel(’x_1’,’fontsize’,16), ylabel(’x_2’,’fontsize’,16)

zlabel(’f(x)’,’fontsize’,16)

Running this code looks like this:

>> gridsearch(@f4fcn,-9:10,-9:10,5.0e-7)

searching using a grid of 400 initial points x_0 ...

global minimum: f(-1.563167,-2.668592) = -3.264378

Note that the second and third arguments are lists of x1 and x2 coordinates, respectively, of the
initial points x0. For tol you can choose any value around 10−6 to get about 6 digit accuracy.

6

The code produces two figures, namely the surface plot above and the contour map below
which shows the computed global minimum x∗ (large star) and the x0 values (small circles)
which lead to x∗. In this case we see that a rectangle of 60 values of x0 lead to the solution x∗.

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x 2

One might observe that a coarser grid of x0 will do just fine. This is true! For example

>> gridsearch(@f4fcn,-10:2:10,-10:2:10,5.0e-7)

finds the same minimum to the same accuracy using 1/4 the work. However, too coarse and one misses
the global minimum:

>> gridsearch(@f4fcn,-10:12:14,-10:12:14,5.0e-7)

searching using a grid of 9 initial points x_0 ...

global minimum: f(4.605414,2.804601) = -2.725351

F5. My cartoons:

x1

x2

x3

S

m = 0

x1

x2

x3

S

m = 1

7

x1

x2

x3

S

m = 2

x1

x2

x3

S

m = 3

F6. (a) Given x ∈ Rn, as usual we define g(x) to be a column vector formed from the
numbers g1(x), . . . , gℓ(x). For a feasible point x also define h(x) to be the column vector formed
from all constraints hi(x) and h̃(x) to be the column vector formed from the constraints hi(x)

which are active at x, i.e. for which hi(x) = 0. In these terms we can define

Definition. x∗ is a regular point of the constraints if the matrix[
∇g(x∗) ∇h̃(x∗)

]
has linearly independent columns.

Just as in the textbook’s definition on page 503, the inactive inequality constraints are not rele-
vant in this definition.

The Lagrangian for this problem is

L(x, λ, µ) = f(x)−
ℓ∑

i=1

λigi(x)−
m∑
j=1

hj(x)

= f(x)− λ⊤g(x)− µ⊤h(x)

where λ ∈ Rℓ and µ ∈ Rm. Note that h(x), not h̃(x) is used here.

(b) The following theorem, which is the full Karush-Kuhn-Tucker theorem,1 states the first-
order necessary conditions.

Theorem. Suppose x∗ is a regular point of the constraints and a local minimizer.
Then there exist vectors λ∗ ∈ Rℓ and µ∗ ∈ Rm so that

g(x∗) = 0 primal feasibility: equality constraints

h(x∗) ≥ 0 primal feasibility: inequality constraints

∇xL(x∗, λ∗, µ∗) = 0 stationarity

µ∗ ≥ 0 dual feasibility

µ⊤
∗ h(x∗) = 0 complementary slackness

1en.wikipedia.org/wiki/Karush-Kuhn-Tucker conditions

https://en.wikipedia.org/wiki/Karush-Kuhn-Tucker_conditions

8

You were not asked to prove this, just to state it. Note that the stationarity condition, i.e. the
first-order condition itself, can be written

∇f(x∗) = ∇g(x∗)λ∗ +∇h(x∗)µ∗

That is, the gradient of f at the solution can be written as a linear combination of the gradi-
ents of the constraints. When there are inequality constraints, however, by complementary
slackness we expect some of their corresponding multipliers µi to be zero.

F7. (I have written the solution as a theorem, but this is just a stylistic choice. Because the feasible
set is convex and the objective function is both strictly-convex and coercive (f(x) → ∞ as ∥x∥ → ∞),
this minimization problem has a unique global solution, which we find. I used Lagrange-multiplier
techniques (e.g. equation (14.2)), but if you use a null-space matrix then it is easiest to go to section 3.3
and find that you can choose Z = I − A⊤(AA⊤)−1A. Finally, note that MATLAB computes this x∗ if
you do “A \b” when A is m× n and m < n, and b ∈ Rm; try it out!)

Theorem. Suppose A ∈ Rm×n has full row rank, so m ≤ n, and suppose b ∈ Rm. The point

(4) x∗ = A⊤(AA⊤)−1b

solves the problem

minimize f(x) = 1
2x

⊤x(5)

subject to Ax = b

Proof. Suppose x̃ is a point which satisfies Ax̃ = b and which is a local minimizer of f(x). Note
∇f(x) = x. By Lemma 14.2, but using the Lagrange multipliers form in equation (14.2), there
is a vector λ̃ ∈ Rm so that the local minimizer x̃ satisfies

x̃ = A⊤λ̃.

(The Lagrangian for this problem is L(x, λ) = 1
2x

⊤x− λ⊤(Ax− b) so ∇xL(x, λ) = x−A⊤λ.)
That is, we have this system of equations describing x̃ and λ̃:

x̃−A⊤λ̃ = 0(6)

Ax̃ = b

Solving the first equation for x̃ and substituting into the second equation gives

AA⊤λ̃ = b.

Because A has full row rank it follows that AA⊤ is positive definite, thus invertible,2 so

λ̃ = (AA⊤)−1b.

From the first equation in (6) we now get x̃ = A⊤(AA⊤)−1b. Thus x̃ is the point x∗ given by (4).
On the other hand, x∗ satisfies the sufficient conditions in Lemma 14.3. Note that ∇2f(x) =

I . Suppose Z is a null space basis matrix for A, so Z has full column rank, and then Z⊤Z is
positive definite.3 But then Z⊤∇2f(x∗)Z = Z⊤IZ = Z⊤Z is positive definite. Thus x∗ is a
strict local minimizer of the problem. □

2This fact was made explicit in class, and it is Exercise 3.4 in section 3.3.
3This is really the same fact again, but it is Exercise 3.5 in section 3.3.

