## Worksheet: If IEEE 754 had a 12-bit standard ...

The actual IEEE 754 standards for 64-bit double precision representation is cumbersome to play with, so for convenience we pretend here that the standard has a 12-bit version. It might look like this:

These 12 bits are organized to represent a *nonzero* number:

$$x = (-1)^s (1.b_1b_2b_3b_4b_5b_6b_7)_2 2^{(e_1e_2e_3e_4)_2 - (0111)_2}$$

Note that  $(1.b_1b_2b_3b_4b_5b_6b_7)_2$  is called the *mantissa*. The power on the big 2 is the *exponent*. The special offset  $(0111)_2$ , equal to 7 in base ten, is called the *exponent bias*. We also define some exceptional cases:

- $\bullet$  exponent bits  $(0000)_2$  define the number zero or subnormal numbers
- exponent bits  $(1111)_2$  define the other exceptions:  $\pm \infty$  and NaN

(No further details of the  $(1111)_2$  exceptions will be considered here.)

- (a) What is the largest real number that this system can represent? Show the bits.
- **(b)** What is the smallest positive number that this system can represent? (What is the first normal number to the right of zero?) Show the bits.
- (c) If we define  $\epsilon_{\text{machine}}$  as the gap between 1 and the next representable number greater than 1, what is the value of  $\epsilon_{\text{machine}}$  in this system?
- (d) What is the representation of zero? (Of +0? Of -0?) Show the bits.



| (e)        | What is the representation of 4? Show the bits. |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
|------------|-------------------------------------------------|---------|-------------|--------|-------|--------|---------|-------|--------|--------|-------|------|-------|--------------|-------|-------|------------|
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
| (0)        | XA71 ( !- (1 !                                  | 1       | -1          |        |       | .1.1 . |         | .1    | 1_ :   | _1_ :. |       | _ 11 | (1    | - 0 <b>2</b> | C1    | (1-   | - 1- : ( - |
| (f)        | What is the                                     | larges  | st re       | epres  | senta | abie   | num<br> | ıber  | wni    | cn is  | ssm   | aner | tnar  | 1 8?<br>]    | Snov  | w the | e bits     |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       | J            |       |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
| (g)        | In the interv                                   | val [4, | , 8),       | how    | / ma  | ny n   | uml     | ers   | can    | be r   | epre  | sent | ed?   |              |       |       |            |
|            |                                                 |         |             |        |       | -      |         |       |        |        | -     |      |       |              |       |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
| (h)        | What is the                                     | close   | est n       | umb    | oer t | ο π =  | = (3.   | 1415  | 59 · · | •)103  | ? Sho | ow t | he bi | its.         |       |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
| (i)        | Exactly how                                     | man     | w d         | lictir | act n | on-0   | V COI   | ation | aal r  | num    | hore  | can  | ho r  | onr          | ocont | tod i | n thi      |
|            | em? ( <i>Include</i> )                          |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
| ехро       | nent $(1111)_2$ ,                               | i.e. ±0 | $\infty$ ar | nd N   | JaN.) | )      |         |       |        |        |       |      |       | ·            | ·     |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       |              |       |       |            |
| <b>(*)</b> | C1 (1 1 1 )                                     |         |             | 1      |       | 1      | 1       |       |        |        |       |      |       |              |       |       |            |
| (j)        | Show the bit                                    | ts of c | one :       | subi   | norn  | nai n  | umb     | oer.  |        |        |       | T    | 1     | ]            |       |       |            |
|            |                                                 |         |             |        |       |        |         |       |        |        |       |      |       | ]            |       |       |            |