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Math 310 Numerical Analysis (Bueler) Thursday, 17 October 2019

Midterm Exam

In class. No book, electronics, or notes. 95 minutes maximum. 115 points possible.

1. (a) (5 pts) A differentiable function f (7) and an iterate z; are shown on the axes below.
Sketch, with appropriate labeling, how Newton’s method determines the next iterate Thtl-
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(b) (10 pts)  Suppose ¢(z) is the linearization of [(z) at zx. Give a formula for £(z) and then
a formula for where it crosses the z-axis. Write the result as Newton’s method in the box below.

L) = £ + £ (6 %)
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2. (a) (10 pts)  Consider the equation 2% — 32+ 1 =0 and suppose ag = —1 and by = 1 is a
bracket. Apply two steps of the bisection method, reporting the bracket at the end of each step.
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(b) (10 pts)  For the same equation as in (a), with 29 = —1 and r; = 1, apply one step of the

secant method.
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3. (15 pts)  Solve the following system by Gauss elimination and back-substitution:

3T, + 1o + Zoy= 11
3xy +4ay + xg =14
—321 + 523 — 223 =1

Show your steps in an organized way. It must be clear that you are following the algorithm we
considered in class. (Hints: Pivoting is not requested. The numbers are wintegers atl every stage if

you follow the algorithm.)
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4. (5pts) Suppose we have used Gauss elimination with partial pivoting to factor some matrix
A, so that PA = LU. Tere P is a known permutation matrix, L is a known lower-triangular
matrix, and U is a known upper-triangular matrix. Explain how to use this factorization to easily
solve Ax = b, assuming b is also given, and identify what algorithms are needed.

hx=) <> PAx=PL = LUx=Fb
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5. (10 pts)  Consider lower-triangular matrices with unit diagonal:

1 0 0 .. 0] L
By LD 0 .
L = 33,1 g3,2 1 0 L\j - 6:1
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Write a MATLAB/OCTAVE code, or a complete pseudocode, to solve systems Ly = b, with L in
the above form, by forward substitution.

function y = forwardsub(L,b)
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6. Suppose that the IEEE standard for floating point representation discussed in class had an 8
bit version. It might look like this:

[sler]ea]es[bi]bs [bs]bs]

These 8 bits would represent the number

e (_1)$ (1-blbzb3b4)2 X 2(‘31&263)2*3.

However, normal numbers would not use exponents (000}, nor (111),, which have special uses.

(a) (5 pts) ~ What is the representation of 1 {one) in this system? (Give all the bils.)

, P
| =(3)° (1.0000), x 20102
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(b) (5 pts) ~ What is the largest number that this system can represent?

0 CHO)Z""Z
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(c) (5 pts)  What is the value of “machine epsilon” in this system?

e={] odo }:}2——((. 0000), = TJE

(d) (3 pts)  How would zero be represented? (Give all the bits.)

O = |0|0o[0|0]|0|0|0

(e) (2 pts)  Give the bits of a nonzero subnormal number. (Just pick one.)
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7. (a) (5 pts) TFind all the fixed points =, of p(x) = 222 + 3z — 1. (Hint: There are two.)
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(b) (10 pts)  Recall Theorem 4.5.1:

Theorem. Assume that ¢ € C! and |¢'{x)| < 1 in some interval [z, — &, . + 8] around a
fixed point z, of p. If zg is in this interval then the fixed point iteration converges to z..

For the same function ¢(z) as in part (a), will the iteration

Tpr1 = o{xk)

converge to each fixed point z, for all zy near z,? (Hint: Consider each x, in turn.)
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8. (a) (5 pts) State Taylor’s theorem with remainder in the n = 2 case. Be sure to include the

assumptions about the function f{z).
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(b) (5 pts)  Using the Theorem above, find the quadratic {degree two) Taylor polynomial for f(z) = /z

using basepoint a = 4.
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Theorem.

(c) (5 pts)  The result of (b) is a polynomial P(z) such that f(z) =~ Py(x). Use the Theorem in (a)
to estimate the size of the error |Pa(z) — f(z)| for all = in the interval [3, 5].
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Extra Credit. (3 pts) Do one step of Newton’s method to find the first-quadrant intersection of
the circle 22 + y* = 4 and the graph y = €®. Start from (zq,0) = (1,2), which is not too far from the
intersection.
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