
Math 614 Numerical Linear Algebra (Bueler) Nothing to turn in!

IEEE 754: What it means for humanity and your computer
Lecture 13 of the textbook1 has an idealized view of floating point, which is wise. However,

in this separate document I lay out some basic details of how floating point numbers are actually
implemented on a computer, assuming they conform to the IEEE 754 standard, which they almost
certainly do.

• A bit is a binary digit, the irreducible atom of memory, always in either of two states {0, 1}.
Computer memories are organized into bytes, that is, groups of 8 bits.

• Integers are represented on computers using 1, 2, 4, or 8 bytes. It is straightforward, and
exact if the integer is not too big in magnitude, but we ignore the details.

• The IEEE2 754 standard regards how real numbers are approximately represented in mem-
ory, that is, how floating point numbers are represented. “Floating point” is essentially just
scientific notation, but using only finitely-many bits, so only a finite subset of real numbers
can be represented. For more information on the standard than described here see

en.wikipedia.org/wiki/IEEE_754

• The most important floating point representations use 32 or 64 bits, i.e. 4 pr 8 bytes. These
are called binary32 (also known as single) and binary64 (double) in the standard. For
binary32 the number

x = (−1)s × (1.d1d2d3 . . . d23)2 × 2(e1...e8)2−127

is represented by 32 bits this way:

s e1 e2 e3 e4 e5 e6 e7 e8 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23

In binary64 (double) the number

x = (−1)s × (1.d1d2d3 . . . d52)2 × 2(e1...e11)2−1023

is represented by 64 bits this way:

s e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 . . . d51 d52

• Note that the “1.” in the above representations, which appears before the di bits, is always
present and therefore it does not use a bit of memory! It is called the “implicit leading bit”.

• Unlike the system F in the textbook (Lecture 13), in any actual floating-point representation,
including IEEE 754, there are only finitely-many allowed values of the exponent e. Thus
there are only finitely-many representable floating point numbers.

• The IEEE 754 standard uses abstract language to describe the way the digits are arranged.
Every representable nonzero number is of the form

(1) x = (−1)s × m

βt−1
× βe

1L. Trefethen and D. Bau, Numerical Linear Algebra, SIAM Press, 1997.
2IEEE = Institute of Electrical and Electronics Engineers.
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for fixed positive integers β (the base) and t (the precision). The other symbols are s ∈ {0, 1}
(the sign), an integer m (the mantissa), and an integer e (the exponent). These satisfy

(2) βt−1 ≤ m ≤ βt − 1, emin ≤ e ≤ emax.

• In the current version of the standard, IEEE 754-2019, there are a number of formats. How-
ever, we ignore the decimal standards with β = 10, which are rarely used. We consider only
binary formats with β = 2. The formats that matter most use 16, 32, 64, or 128 bits. We have
already shown how the first two are implemented in memory. In terms of (1) and (2) they
follow this table:

name common name precision t exponent bits exponent bias emin emax

binary16 half 11 5 24 − 1 = 15 -14 +15
binary32 single 24 8 27 − 1 = 127 -126 +127
binary64 double 53 11 210 − 1 = 1023 -1022 +1023
binary128 quadruple 113 15 214 − 1 = 16383 -16382 +16383

• If you convert the precision and exponent limits to decimal you get these values:

name decimal precision decimal emax decimal emin

binary16 3.31 4.51 -4.21
binary32 7.22 38.23 -37.93
binary64 15.95 307.95 -307.65
binary128 34.02 4931.77 -4931.47

• For normal numbers, in single the standard requires (e1 . . . e8)2 ∈ {1, 2, . . . , 254} and in
double the standard requires (e1 . . . e11)2 ∈ {1, 2, . . . , 2046}.

• If all bits ei are zero or all bits ei are one then the number has special/exceptional meaning.
Note that the number zero is not in form (1), and it is such an exception. Zero is represented
by setting all bits other than s to zero. Because the sign bit is not determined, this means
“+0” and “−0” exist as separate representations. (Strange but true!)

• For a “subnormal” number, all the bits ei are zero but some bits di are nonzero.

• When all bits ei are one there are representations of +∞ and −∞ and of things that are “not
a number” (NaN). We omit all details here.

• It is safe to assume that any modern desktop or laptop computer implements IEEE-compliant
binary64 floating point operations in hardware. Other types are commonly implemented
in software, especially binary128, which is thus much slower on current computers. The
smaller binary16 and binary32 formats are typically used for storing numbers, which in-
creases storage capacity, or for graphics, or for the weights in a neural network.

• One major goal of the IEEE 754 standard is that axiom (13.5) in the textbook applies. The
standard also addresses the rounding errors which occur in arithmetic operations (addition,
multiplication, etc.), with the goal that axiom (13.7) in the textbook applies. In fact, the
design goal is that the two axioms hold with as small a value for ϵmachine as practically
possible. Taking this viewpoint, the other details are not so important.


