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A method for the inversion of a nonsymmetric matrix, due to J. W. Givens, has 
been in use at Oak Ridge National Laboratory and has proved to be highly stable 
numerically but  to require a rather large number of arithmetic operations, in- 
cluding a total  of n(n  -- 1)/2 square roots. Strictly, the method achieves the 
triangularization of the matrix, after which any standard method may  be em- 
ployed for inverting the triangle. The triangular form is brought about  by means 
of a sequence of n(n  -- 1)/2 plane rotations, whose product  is an orthogonal 
matrix. Each rotation requires the extraction of a square root. The advantage in 
using the method lies in the fact tha t  an orthogonal matrix is perfectly con- 
ditioned. Hence the condition of the matrix cannot deteriorate through suc- 
cessive transformations. In fact, if ore  defines the condition number of a matrix 
A to be [1] 

~(A) = [] A ][ [I A-I[[, 

where the norm is the spectral norm, then for any orthogonal matrix W, 7(W) = 1 
and the condition of any matrix is preserved under multiplication by an orthog- 
onal matrix: 

, y (WA ) = "y(A ). 

To look at  the mat ter  another way, if 

W A  = R, 

where R is an upper triangle, then 

A r A  = A T W r W A  = RrR ,  

so that  R is precisely the triangle one would obtain from the application of the 
Choleski square-root method to the positive definite matrix A r A .  I t  is, in fact, 
the matrix to which yon Neumann and Goldstine [2] are led in their s tudy of 
Gaussian elimination as apphed to a positive definite matrix. To obtain the 
precise triangle tha t  would result from Gaussian elimination with A r A ,  one has 
only to remove as a factor the diagonal of R: 

R = DU,  

where U has a unit diagonal. 
The purpose of the present note is to point out that  the same result can be 

obtained with fewer arithmetic operations, and, in particular, for inverting a 
square matrix of order n, at most 2(n - 1) square roots are required, instead of 
n(n  - 1)/2. For n > 4, this is a saving of (n - 4)(n - 1)/4 square roots. 
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I t  is as easy to discuss the general complex case, and the method is based upon 
the almost self-evident 

LEMMA. For any  vector a ~ O, and a n y  un i t  vector v, a un i t  vector u exists such 
that 

( I  - 2uu*)a  = II a [[ v, 

where [[ a [[ represents the Euc l idean  norm:  [[ a ]]2 = a*a. The computa t ion  requires 

two square roots and a single reciprocation• 
The proof exhibits the computat ion.  Let  

a = ]]a]] > O. (1) 

This represents one of the necessary square roots. I t  is required tha t  

a - 2 (u*a)u  = av. 

Let 

Then 

= 2 u * a .  (2)  

~ u  = a - ~ v ,  ( 3 )  

2 2a(c~ v 'a ) ,  (4) 

which accounts for the other square root. Clearly 

c~ - v*a >= O, 

since a is the Euclidean length of a, and v*a the projection of a upon the unit  
vector v. Hence a and g are both  real and can be taken non-negative. I f  a = v 'a ,  

then the lemma is verified with u = 0; otherwise take g > 0 defined by  (4), and 
one verifies easily tha t  u defined by  (3) is effective. The  single reciprocation 

• . - -1 necessary is in g 
Now let a be the first column of A and take v = e~, the first column of the 

identity. Application of the lemma provides a uni tary  matrix 

U1 = I - 2ulu1* 

such tha t  the first column of U1A is null except in the first element. The result is 
equivalent to the application of n -- 1 plane rotations, with one slight difference, 
tha t  

det ( I  -- 2uu*) = --1,  

whence this t ransformation reverses the orientation of the configuration• One 
continues after  suppressing the first row and first column of the t ransformed 
matrix. After n -- 1 steps, a t  most,  the matr ix  A is triangularized: 

U • Un- lUn-2 . . "  U1, U A  = R.  

Evident ly  

det A = ( - 1 )  ~-1 det R. 
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An interesting byproduct  of the reduction is a simple proof of the theorem of 
Hadamard,  tha t  

I d e t A I  ~ H]]a~] l ,  1 

where a, is the , th  column of A. This results from the fact tha t  the Euclidean 
norm is preserved under multiplication by  a unitary matrix, and that  each 
diagonal element of R is the norm of the projection of that  column upon a certain 
subspace. 

I t  is evident that  when the reduction is applied to a matrix A of n columns 
and N > n rows, there results again an upper triangle of non-null elements, and a 
trapezoid of zeros, the triangle representing the factorization of the normal 
matrix A*A required for a least squares solution. 

Returning to the case of a square matrix, if the vectors u, are stored as gen- 
erated and applied to the successive columns of the matrix, there are required the 
n - 1 reciprocations, 2(n - 1) square roots, and 

(n -- 1)(2n 2 + 5n + 9)/3 ~ 2n3/3 

multiplications for the formation of R. In this count it is assumed that  one forms 
o~, t~ -1, u, and then each u'at and uu*a~, i > 1. 

Inversion of R requires ( n  +3 2 )  multiplications; and if R -1 is multiplied by 
/ \ 

the U~ in reverse order, then 

(n -- 1)(4n 2 + 7n + 12)/6 

multiplications are required. Altogether, for the formation of A -~, the number 
of multiplications is 

(3n 3 --F 4n 2 + 5n - 10)/2 -+- 3n3/2, 

as compared with approximately 5n3/2 multiplications required if one were to 
form (A*A)-'A*. 

Ky Fun has pointed out tha t  half the square roots and all the reciprocations 
are evaded in the triangularization proper if one forms 

t ~ I -  2(#~t)(ttu)*. 

Instead of R, a scalar multiple of R is formed in this way. This is feasible for 
floating-point computations, but  probably not for fixed point. 

If the matrix 

A = ( a l ,  a 2 ,  - . .  , a ~ )  

is scaled at the outset so that  [[ a, I1 =< 1 for every z, then all elements remain 
within range throughout the triangularization, since a uni tary transformation 
leaves the Euclidean norm invariant. Hence no scaling problems arise in the 
actual triangularization. Moreover, when R- '  is formed, if this is similarly 
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scaled no further scaling is required in multiplying by  the matrices U~ to form 
A -I. Only in forming R -I itself may intermediate scaling be required. 

The uni tary  matrix employed here is obviously suggested by  a somewhat more 
general one previously used [1]. A similar form is used by Steenrod [3] for theor- 
etical purposes. 
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