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A method {or the inversion of a nonsymmetric matrix, due to J. W. Givens, has
been in use at Oak Ridge National Laboratory and has proved to be highly stable
numerically but to require a rather large number of arithmetic operations, in-
cluding a total of n{n — 1)/2 square roots. Strictly, the method achieves the
triangularization of the matrix, after which any standard method may be em-
ployed for inverting the triangle. The triangular form is brought about by means
of a sequence of n{n — 1)/2 plane rotations, whose product is an orthogonal
matrix. Each rotation requires the extraction of a square root. The advantage in
using the method lies in the fact that an orthogonal matrix is perfectly con-
ditioned. Hence the condition of the matrix cannot deteriorate through suec-
cessive transformations. In fact, if one defines the condition number of a matrix
A to be [1]

y(A)y = [ 4[| A7,
where the norm is the spectral norm, then for any orthogonal matrix W, x(W) = 1

and the condition of any matrix is preserved under multiplicatior: by an orthog-
onal matrix:

v(WA) = v(4).
To lock at the matter another way, if
WA = R,

where E is an upper triangle, then
ATA = ATWTWA = R'R,

so that I is precisely the triangle one would obtain from the application of the
Choleski square-root method to the pusitive definite matrix A4, It is, in fact,
the matrix to which von Neumann and Goldstine [2] are led in their study of
Gaussian elimination as appled to a positive definite matrix. Te obtain the
precise triangle that would result from Gaussian elimination with A74, one has
only to remove as a factor the diagonal of i:

R = DU,

where U has a unit diagonal.

The purpose of the present note is to point out that the same result can he
obtained with fewer arithmetic operations, and, in particular, for inverting a
square matrix of order n, at most 2(n — 1) square roots are required, instead of
n{n — 1)/2. For n > 4, thisis a saving of (n — 4)(n — 1)/4 square roots.
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It is as eagy to discuss the general complex case, and the method is based upon
the almost self-evident

Lemyva. For any vector o = 0, and any wnit veclor v, & unit veclor v exists such
thot

I - 2u¥a = {ao,

where || a || represents the Euclidean norm: || o ||° = a*a. The computation requires
wo square rools and a single reciprocation.
The proof exhibits the computation. Let

a=|a]>0 (1
This represents one of the necessary square roots, Tt is required that

a = 2(u*a)u = av.

Let
u = 2uta. (23
Then
pr =0 — av, (3)
u = 2ala — v*a), (4)

which accounts for the other square root. Clearly
a — g = 0,

since ¢ is the Fuclidean length of @, and v*e the projection of ¢ upon the unit
vector ». Hence a and x are bhoth real and can be taken non-negative. If o« = v*q,
then the lemma is verified with u = 0; otherwise take p > 0 defined by (4), and
one verifies easily that 4 defined by (3) is effective. The single reciprocation
necessary is in u .

Now let a be the first column of A and take v+ = ¢, the first column of the
identity. Application of the lemma provides a unitary matrix

UJ_ =] — 2u1u1*

such that the first column of U1A is null except in the first element. The result is
equivalent, to the application of n — 1 plane rotations, with one slight difference,
that

det (I — 2uu*) = —1,
whence this transformation reverses the orientation of the configuration. One

continues after suppressing the first row and first column of the transformed
matrix. After n — 1 steps, at most, the matrix 4 is triangularized:

U - U"_1(]n72 v Url, UA = R
Evidently
det 4 = (=1)" " det R.
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An interesting byproduct of the reduction is a simple proof of the theorem of
Hadamard, that

|det 4] = [Tfal],

where a, is the sth column of A. This results from the fact that the Euclidean
norm is preserved under multiplication by a unitary matrix, and that each
diagonal element of R is the norm of the projection of that column upon a certain
subspace.

It is evident that when the reduction is applied to o matrix A of % columns
and N > n rows, there results again an upper triangle of non-null elements, and a
trapezoid of zeros, the triangle representing the factorization of the normal
matrix 4*4 required for a least squares solution.

Returning to the ease of a square matrix, if the vectors , are stored as gen-
erated and applied to the successive columns of the matrix, there are required the
n — 1 reciprocations, 2(n — 1) square roots, and

(n — (27" + 5n + 9)/3 = 2n°/3

multiplications for the formation of R, In this count it is assumed that one forms
@, 1, %, and then each »*a, and uu*a, , 7 > 1.

Inversion of K requires (n - 2) multiplications; and if R™ is multiplied by

3
the U, in reverse order, then

(n — 1)(dn® + 7n 4 12)/6
multiplications are required. Altogether, for the formution of A7, the number
of multiplications is
(3n° 4 40’ + Sn — 10)/2 = 30°/2,
as compared with approximately 5n°/2 multiplications required if one were to
form (4*4)7'A*.

Ky ¥an has pointed oul that half the square roots and all the reciprocations
are evaded in the triangularization proper if one forms

BT — 2(u)(uu)*.

Instead of K, a scalar multiple of £ is formed in this way. This is feasible for
floating-point computations, but probably not for fixed peint.
If the matrix

4 = (a'lsaﬁyl")aﬁ)

is sealed at the outset so that || ¢, || £ 1 for every 4, then all elements remain
within range throughout the triangularization, since a unitary transformation
leaves the Buclidean norm invariant. Hence no scaling problems arise in the
actual triangularization. Moreover, when R™' is formed, if this is similarly
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scaled no further sealing is required in multiplying by the matrices U; to form
A7 Only in forming B itself may intermediate scaling be required.

The unitary matrix employed here is obviously suggested by a somewhat more
general one previously used [1]. A similar form is used by Steenrod [3] for theor-
etical purposes.
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