Matrix Norm Essentials

- Matrix norms have vector norm properties:
 - $\circ ||A|| \ge 0 \text{ and } ||A|| = 0 \implies A = 0$
 - $\circ ||A + B|| \le ||A|| + ||B||$
 - $\circ \|\alpha A\| = |\alpha| \|A\|$
- There are really only four norms to know:
 - $\|\cdot\|_1, \quad \|\cdot\|_2, \quad \|\cdot\|_{\infty}, \quad \|\cdot\|_{\text{Frob}}$
 - \circ 3 are induced from vector norms: $1, 2, \infty$
 - 3 have easy-to-compute formulas: $1, \infty$, Frob
- Induced norms (and Frobenius) have an additional multiplicative property:
 ○ ||AB|| ≤ ||A|| ||B||
- Induced norms (and Frobenius) satisfy ρ(A) ≤ ||A||.
 Recall ρ(A) = max |λ| where λ is an eigenvalue.
 However, ρ(A) ≪ ||A|| is common. The norm can be a very conservative estimate of ρ(A).
- The $\|\cdot\|_2$ norm is best for Euclidean ideas and hermitian/normal matrices. Reasons:
 - $\circ \|QA\|_2 = \|A\|_2 \text{ if } Q \text{ is unitary } (Q^*Q = I).$ $\circ \text{ Largest singular value: } \sigma_1(A) = \|A\|_2.$
 - If $A^* = A$ then $\rho(A) = ||A||_2$.
- Iteration

 v, Av, A^2v, \ldots always converges

if and only if $\rho(A) < 1$.

- Thus if ||A|| < 1 then convergence.
- But not conversely!