
Math 614 Numerical Linear Algebra (Bueler) Not to be turned in!

IEEE 754: What it means for humanity and your computer
The textbook1 has an idealized view of floating point, which I think is wise. However, in this sep-

arate document I lay out the basic details of how floating point numbers are actually implemented
on a computer, assuming they conform to the IEEE 754 standard, which they almost certainly do.

• Computer memories are organized into bytes, that is, groups of 8 bits. A bit is a binary digit,
the irreducible atom of memory, always in either of two states {0, 1}.

• Integers are represented on computers using 1, 2, 4, or 8 bytes. The way this is done is
straightforward, but we ignore the details.

• The IEEE 754 standard is about how real numbers are approximately represented in mem-
ory, that is, how floating point numbers are represented. “Floating point” is essentially just
scientific notation, but using only finitely-many bits and thus representing only a finite sub-
set of real numbers. “IEEE” stands for “Institute of Electrical and Electronics Engineers”.
For more information on the standard than described here, see the wikipedia page

en.wikipedia.org/wiki/IEEE_754

• The most important floating point representations use 32 and 64 bits, or 4 and 8 bytes, re-
spectively. These are called binary32 (“single”) and binary64 (“double”) in the standard,
respectively. In binary32 the number

x = (−1)s × (1.d1d2d3 . . . d23)2 × 2(e1...e8)2−127

is represented by 32 bits this way:

s e1 e2 e3 e4 e5 e6 e7 e8 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23

In binary64, a.k.a. double, the number

x = (−1)s × (1.d1d2d3 . . . d52)2 × 2(e1...e11)2−1023

is represented by 64 bits this way:

s e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 . . . d51 d52

• Note that the “1.” in the above representations, which appears before the di bits, is always
present and therefore it does not use a bit of memory! It is called the “implicit leading bit”.

• The IEEE 754 standard uses abstract language to describe the way the bits are arranged.
Concretely, however, every representable nonzero number is of the form

(1) x = (−1)s × m

βt−1
× βe

for fixed positive integers β (the base) and t (the precision). The other symbols, namely s ∈
{0, 1} (the sign), the integer m (the mantissa), and the integer e (the exponent), depend on,
and determine, x. These satisfy

(2) βt−1 ≤ m ≤ βt − 1, emin ≤ e ≤ emax.

1L. Trefethen and D. Bau, Numerical Linear Algebra, SIAM Press, 1997.

en.wikipedia.org/wiki/IEEE_754


2

• Unlike the system F in the textbook (Lecture 12), in an actual floating-point representation
there are only finitely-many allowed values of the exponent e. Thus there are only finitely-
many representable floating point numbers.

• In the current version of the standard, essentially IEEE 754-2008, there are a number of
formats. However, we ignore the decimal standards with β = 10, which are rarely used, and
look only at binary formats with β = 2. Then the four formats that matter most use 16, 32,
64, or 128 bits, respectively. We have already shown how the first two are implemented in
memory. In terms of form (1) and constraints (2), they follow this table:

name common name precision t exponent bits exponent bias emin emax

binary16 half 11 5 24 − 1 = 15 -14 +15
binary32 single 24 8 27 − 1 = 127 -126 +127
binary64 double 53 11 210 − 1 = 1023 -1022 +1023
binary128 quadruple 113 15 214 − 1 = 16383 -16382 +16383

• If you convert the precision and exponent limits to decimal you get these values:

name decimal precision decimal emax decimal emin

binary16 3.31 4.51 -4.21
binary32 7.22 38.23 -37.93
binary64 15.95 307.95 -307.65
binary128 34.02 4931.77 -4931.47

• Regarding the exponent, if all bits ei are zero or all are one then the number has special
meaning. Otherwise, for normal numbers, in single the standard requires (e1 . . . e8)2 ∈
{1, 2, . . . , 254} and in double the standard requires (e1 . . . e11)2 ∈ {1, 2, . . . , 2046}.

• Representing the number zero, which is not in form (1), is an example of “special meaning.”
It is done by setting all bits other than s to zero. Because the sign bit is not determined, this
means “+0” and “−0” exist as separate representations. (Strange but true!)

• There are representations of +∞ and −∞, of things that are “not a number” (“NaN”), and
of things called “subnormal” numbers. For a subnormal number in the single representa-
tion, for example, the exponent is (e1 . . . e8)2 = 0 but some bits di are nonzero.

• The IEEE 754 standard also addresses the rounding errors which occur in arithmetic oper-
ations (addition, multiplication, etc.). The goal is that axiom (13.7) in the textbook applies.
Beyond that, details are not in the scope of this note.

• It is safe to assume your laptop implements IEEE-compliant binary64 floating point opera-
tions in hardware. Other types are commonly implemented in software, especially binary128,
which is thus much slower on current computers. The smaller binary16 and binary32 for-
mats are typically used for storing numbers, which increases storage capacity.


