Worksheet: Computing condition numbers.

The goal of this worksheet is to demystify condition numbers. Use the Lecture 12 formulas below, and your knowledge of norms (Lecture 3), to do the Exercises at the bottom and on the next page. Refer to the text as needed.

Formulas. A problem is a function $f: X \rightarrow Y$, where X and Y are normed vector spaces. The Jacobian matrix of a problem f is its first derivative. Specifically, if $X=\mathbb{R}^{n}$ and $Y=\mathbb{R}^{m}$ then the i th component of the output is $f_{i}(x)=f_{i}\left(x_{1}, \ldots, x_{n}\right)$ and the Jacobian is an $m \times n$ matrix:

$$
J=J_{f}(x)=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \tag{1}\\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

Condition numbers measure the sensitivity of problems. They compare output changes to input changes when the input change is small. The absolute condition number of a problem f is defined as $\hat{\kappa}=\sup _{\delta x}\|\delta f\| /\|\delta x\|$, but when f has a derivative one may compute $\hat{\kappa}=\hat{\kappa}_{f}(x)$ as

$$
\begin{equation*}
\hat{\kappa}=\|J(x)\| . \tag{2}
\end{equation*}
$$

The relative condition number has a more relative definition, $\kappa=\sup _{\delta x}(\|\delta f\| /\|f(x)\|) /(\|\delta x\| /\|x\|)$, but when f has a derivative one may compute $\kappa=\kappa_{f}(x)$ as

$$
\begin{equation*}
\kappa=\frac{\|J(x)\|}{\|f(x)\| /\|x\|} \tag{3}
\end{equation*}
$$

Exercises. For each of the 4 problems below use formulas (1), (2), and (3) to compute $J, \hat{\kappa}$, and κ. When you have a choice of norms, choose the most convenient one.

1. $f:(0, \infty) \rightarrow \mathbb{R}$ has formula $f(x)=1 / x$.
2. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has formula $f(x)=x_{1}+x_{2}$.
3. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has formula $f(x)=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$.
4. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has formula $f(x)=A x$ where A is a fixed $m \times n$ matrix.
