Worksheet: If IEEE 754 had a 12-bit standard . . .

A floating point system \mathbb{F} described in Lecture 13 of the textbook (L. Trefethen and D. Bau, Numerical Linear Algebra, SIAM Press 1997) is, in reality, implemented in bits. The actual IEEE 754 standards for 32-bit single precision and 64-bit double precision representations are cumbersome to play with, so for convenience we pretend here that the standard has a 12-bit version. It might look like this:

s	e_{1}	e_{2}	e_{3}	e_{4}	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}	b_{7}

These 12 bits are organized to represent a nonzero number:

$$
x=(-1)^{s}\left(1 . b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} b_{7}\right)_{2} 2^{\left(e_{1} e_{2} e_{3} e_{4}\right)_{2}-(0111)_{2}}
$$

Note that $\left(1 . b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} b_{7}\right)_{2}$ is called the mantissa. The power on the 2 is the exponent. The special offset $(0111)_{2}$, equal to 7 in base ten, is called the exponent bias. We also define some exceptional cases:

- exponent bits $(0000)_{2}$ define the number zero or subnormal numbers
- exponent bits $(1111)_{2}$ define the other exceptions: $\pm \infty$ and NaN
(No further details of the $(1111)_{2}$ exceptions will be considered here.)
(a) What is the largest real number that this system can represent? Show the bits.

(b) What is the smallest positive number that this system can represent? (I.e. what is the first normal number to the right of zero?) Show the bits.

(c) If we define $\epsilon_{\text {machine }}$ as the gap between 1 and the next representable number greater than 1 , what is the value of $\epsilon_{\text {machine }}$ in this system?
(d) What is the representation of zero? Show the bits.

(e) What is the representation of 4? Show the bits.

(f) What is the largest representable number which is smaller than 8 ? Show the bits.

(g) In the interval $[4,8)$, how many numbers can be represented?
(h) Exactly how many distinct non-exceptional numbers can be represented in this system? (Include the number zero but exclude subnormal numbers and any exceptions using exponent (1111) $)_{2}$, i.e. $\pm \infty$ and $N a N$.)
(i) Show the bits of one subnormal number.

