Worksheet: If IEEE 754 had a 12-bit standard ...
A floating point system \mathbb{F} described in Lecture 13 of the textbook (L. Trefethen and D. Eau, Numerical Linear Algebra, SIAM Press 1997) is, in reality, implemented in bits. The actual IEEE 754 standards for 32-bit single precision and 64-bit double precision representations are cumbersome to play with, so for convenience we pretend here that the standard has a 12-bit version. It might look like this:

s	e_{1}	e_{2}	e_{3}	e_{4}	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}	b_{7}

These 12 bits are organized to represent a nonzero number:

$$
x=(-1)^{s}\left(1 . b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} b_{7}\right)_{2} 2^{\left(e_{1} e_{2} e_{3} e_{4}\right)_{2}-(0111)_{2}}
$$

Note that $\left(1 . b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} b_{7}\right)_{2}$ is called the mantissa. The power on the 2 is the exponent. The special offset $(0111)_{2}$, equal to 7 in base ten, is called the exponent bias. We also define some exceptional cases:

- exponent bits $(0000)_{2}$ define the number zero or subnormal numbers
- exponent bits $(1111)_{2}$ define the other exceptions: $\pm \infty$ and NaN We will say nothing further about the $(1111)_{2}$ exceptions.
(a) What is the largest real number that this system can represent? Show the bits.

$$
\left.x=+(1.1111111)_{2} \times 2^{14-7}=\left(2-\frac{1}{2^{7}}\right) \times 2^{7}=2^{8}-1\right)=255_{10}
$$

(b) Not considering subnormal numbers, what is the smallest positive number that this system can represent? (The first normal number to the right of zero.) Show the bits.

$$
x=+(1.0000000)_{2} \times 2^{1-7}=2^{-6}=0.015625
$$

(c) If we define $\epsilon_{\text {machine }}$ as the gap between 1 and the next representable number greater than 1 , what is the value of $\epsilon_{\text {machine }}$ in this system?

$$
\begin{aligned}
\left(1+2^{-7}\right)-1 & =(1.000000)_{2}-(1.0000000)_{2} \\
=2^{-7} & =\varepsilon_{\text {machine }}
\end{aligned}
$$

(d) What is the representation of zero? Show the bits.

0101010010100001010
Note: One goal of these standards is that " $x==0$ " has same meaning whether x is integer or slanting
(e) What is the representation of 4 ? Show the bits. point.
01100110100 o 01010

$$
\begin{gathered}
4=+(1.0000000)_{2} \times 2^{2}=(1.0000000)_{2} \times 2^{9-7} \\
9=(1001)_{2}
\end{gathered}
$$

(f) What is the largegtrepresentable number which is smaller than 8 ? Show the bits.

0|1001|111111111

$$
\begin{aligned}
& x=+(1.1111111)_{2} \times 2^{2}=(1.1111111)_{2} \times 2^{(1001)_{2}-7} \\
&=\left(2-\frac{1}{20}\right) 2^{2}=\left(8-\frac{1}{32}\right)_{10} \\
& \text { 3) }
\end{aligned}
$$

(g) In the interval $(4,8)$, how many numbers can be represented?

From (e) and (f), these numbers have suns S and e bits. There are 2^{7} possibilities for the b bits.
(h) Exactly how many distinct thenowd be norman system? (Include the number zero but exclude subnormal numbers and any exceptions using exponent $(1111)_{2}$, i.e. $\pm \infty$ and $N a N$.)

$$
1^{\text {zero }}+2 \times\left(2^{4}-2\right) \times 2^{7}=1+14 \times 2^{8}=3585
$$

