## **Assignment #8**

## Due Monday 10 November, at the start of class

Please read Lectures 14, 15, 16, and 17 in the textbook *Numerical Linear Algebra*, SIAM Press 1997, by Trefethen and Bau.

DO THE FOLLOWING EXERCISES FROM THE TEXTBOOK:

• **Exercise 15.1** *Do parts* (a), (b), and (c) only.

DO THE FOLLOWING ADDITIONAL PROBLEMS:

- **P19.** The goal of this exercise is to show that the usual matrix-vector multiplication algorithm is backward-stable when we regard the matrix as the input; see part **(c)**. Always assume axioms (13.5) and (13.7) hold. Also, for simplicity, please assume all entries are real numbers.
- (a) Fix  $x \in \mathbb{R}^1$ . Show that if the problem is scalar multiplication, f(a) = ax for  $a \in \mathbb{R}^1$ , then the obvious algorithm  $\tilde{f}(a) = \mathrm{fl}(a) \otimes \mathrm{fl}(x)$  is backward-stable.
- **(b)** Fix  $x \in \mathbb{R}^3$ , a column vector. Show that if  $a \in \mathbb{R}^3$ , a column vector, then the obvious algorithm

$$\tilde{f}(a) = \mathrm{fl}(a_1) \otimes \mathrm{fl}(x_1) \oplus \Big( \mathrm{fl}(a_2) \otimes \mathrm{fl}(x_2) \oplus \mathrm{fl}(a_3) \otimes \mathrm{fl}(x_3) \Big)$$

for the inner product problem  $f(a) = a^*x$  is backward-stable. (Hint. You must choose a vector norm to finish the proof. Note that multiplication comes before addition in the order of operations.)

A proof by induction extends the way you argued part **(b)** to show that the obvious inner product algorithm is backward-stable in any dimension; see Example 15.1. From now on you can assume it is true.

- (c) Fix  $x \in \mathbb{R}^n$ . Show that if  $A \in \mathbb{R}^{m \times n}$  then the obvious algorithm  $\tilde{f}(A)$  for the product problem f(A) = Ax is backward-stable. (Hints. Express Ax using inner products. Do not bother with scalar entries of A or x. However, you must choose a vector norm and an induced norm.)
- (d) Fix  $A \in \mathbb{R}^{m \times n}$ . Explain in at least 4 sentences why the obvious algorithm  $\tilde{f}(x)$  for the problem f(x) = Ax, over  $x \in \mathbb{R}^n$ , is generally **not** backward-stable. However, this result depends on dimension. In fact, for what m, n is this  $\tilde{f}(x)$  backward-stable? (Hints. The algorithm is the same as in part (c), but the input is x. Use what we know for inner products.)

- **P20.** This question requires nothing but calculus as a prerequisite. It simply illustrates a major source of linear systems from applications.
- (a) Consider these three equations, chosen for visualizability:

$$x^{2} + y^{2} + z^{2} = 4$$
$$y = \cos(\pi z)$$
$$x = z^{2}$$

Sketch each equation individually as a surface in  $\mathbb{R}^3$ . (Do this by hand or in MATLAB. Precision in your sketch is not important. The goal is to have a clear mental image of a nonlinear system as a set of intersecting surfaces.) Considering where all three surfaces intersect, explain informally why there are two solutions, that is, two points  $(x,y,z)\in\mathbb{R}^3$  at which all three equations are satisfied. Explain why both solutions are inside the closed box  $0 \le x \le 2, -1 \le y \le 1, -2 \le z \le 2$ .

(b) Newton's method for a system of nonlinear equations is an iterative, approximate, and sometimes very fast, method for solving systems like the one above. Let  $\mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$ . Suppose there are three scalar functions  $f_i(\mathbf{x})$  forming a (column) vector function  $\mathbf{f}(\mathbf{x}) = (f_1, f_2, f_3)$ , and consider the system

$$f(x) = 0.$$

(It is easy to put the part (a) system in this form.) Let

$$J_{ij} = \frac{\partial f_i}{\partial x_i}$$

be the Jacobian matrix:  $J \in \mathbb{R}^{3\times 3}$ . The Jacobian generally depends on location, i.e.  $J = J(\mathbf{x})$ . Of course, it generalizes the ordinary scalar derivative.

Newton's method itself is

$$J(\mathbf{x}_n)\,\mathbf{s} = -\mathbf{f}(\mathbf{x}_n),$$

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \mathbf{s}$$

where  $s = (s_1, s_2, s_3)$  is the *step* and  $x_0$  is an initial iterate. Equation (1) is a system of linear equations which determines s, which you need to *solve* for s, and then equation (2) moves to the next iterate.

Using  $\mathbf{x}_0 = (1, -1, 1)$ , write out equation (1) in the n = 0 case, for the problem in part (a), as a concrete linear system for the step  $\mathbf{s} = (s_1, s_2, s_3)$ .

- (c) Implement Newton's method in MATLAB to solve the part (a) nonlinear system. Show your code. Generate at least five iterations. Use  $\mathbf{x}_0 = (1, -1, 1)$  as an initial iterate to find one solution. Find the other solution using a different initial iterate. Note that format long is appropriate here. Check that  $\mathbf{f}(\mathbf{x}_5)$  is close to zero.
- (d) In calculus you probably learned Newton's method as a memorized formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Rewrite equations (1), (2) for  $\mathbb{R}^1$  to derive this formula.