Assignment 9 (revised)

Due Wednesday 29 November 2023, at the start of class

Please read Lectures $17,20,21,22,23$ in the textbook Numerical Linear Algebra by Trefethen and Bau. (We are skipping Lectures 18 and 19.) This Assignment primarily covers Gauss elimination and pivoting.

Do THE FOLLOWING EXERCISES from Lecture 17:

- Exercise 17.2 Hint. Exactly what does Theorem 17.1 and Theorem 15.1 imply ...

Do THE FOLLOWING EXERCISES from Lecture 20:

- Exercise 20.3 Do part (a) only.
- Exercise 20.4

Do THE FOLLOWING EXERCISES from Lecture $21:{ }^{1}$

- Exercise 21.1

Do THE FOLLOWING EXERCISES from Lecture 22:

- Exercise 22.1

Do THE FOLLOWING ADDITIONAL EXERCISES.

P18. This question requires nothing but calculus as a prerequisite. It shows a major source of linear systems from applications.
(a) Consider these three equations, chosen for visualizability:

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}=4 \\
y=\cos (\pi z) \\
x=z^{2}
\end{gathered}
$$

Sketch each equation individually as a surface in \mathbb{R}^{3}. (Do this by hand or in MATLAB. Accuracy is not important. The goal is to have a clear mental image of a nonlinear system as a set of intersecting surfaces.) Considering where all three surfaces intersect, describe informally why there are two solutions, that is, two points $(x, y, z) \in \mathbb{R}^{3}$ at which all three equations are satisfied. Explain why both solutions are inside the closed box $0 \leq x \leq 2,-1 \leq y \leq 1,-2 \leq z \leq 2$.
(b) Newton's method for a system of nonlinear equations is an iterative, approximate, and sometimes very fast, method for solving systems like the one above.

[^0]Let $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$. Suppose there are three scalar functions $f_{i}(\mathbf{x})$ forming a (column) vector function $\mathbf{f}(\mathbf{x})=\left(f_{1}, f_{2}, f_{3}\right)$, and consider the system

$$
\mathbf{f}(\mathbf{x})=0 .
$$

(It is easy to put the part (a) system in this form.) Let

$$
J_{i j}=\frac{\partial f_{i}}{\partial x_{j}}
$$

be the Jacobian matrix: $J \in \mathbb{R}^{3 \times 3}$. The Jacobian generally depends on location, i.e. $J=$ $J(\mathbf{x})$, and it generalizes the ordinary scalar derivative.

Newton's method itself is

$$
\begin{gather*}
J\left(\mathbf{x}_{n}\right) \mathbf{s}=-\mathbf{f}\left(\mathbf{x}_{n}\right), \tag{1}\\
\mathbf{x}_{n+1}=\mathbf{x}_{n}+\mathbf{s} \tag{2}
\end{gather*}
$$

where $\mathbf{s}=\left(s_{1}, s_{2}, s_{3}\right)$ is the step and \mathbf{x}_{0} is an initial iterate. Equation (1) is a system of linear equations which determines s, and then equation (2) moves to the next iterate.

Using $\mathbf{x}_{0}=(1,-1,1)$, write out equation (1) in the $n=0$ case, for the problem in part (a), as a concrete linear system of three equations for the three unknown components of the step $\mathbf{s}=\left(s_{1}, s_{2}, s_{3}\right)$.
(c) Implement Newton's method in MATLAB to solve the part (a) nonlinear system. Show your script and generate at least five iterations. Use $\mathbf{x}_{0}=(1,-1,1)$ as an initial iterate to find one solution, and also find the other solution using a different initial iterate. Note that format long is appropriate here for showing iterates.
(d) In calculus you likely learned Newton's method as a memorized formula, $x_{n+1}=$ $x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$. Rewrite equations (1), (2) for \mathbb{R}^{1} to derive this formula.

[^0]: ${ }^{1}$ Note that Exercise 21.5 has been removed from this revised version. Feel free to tell me how to do it, because I do not know!

