Assignment 8

Due Friday 10 November 2023, at the start of class

Please read Lectures 13,14,15,16,17 in the textbook Numerical Linear Algebra by Trefethen and Bau. This Assignment covers backward stability. Always assume axioms (13.5) and (13.7).

Do THE FOLLOWING EXERCISES from Lecture 14:

- Exercise 14.1 Do parts (a), (b), (c), (f), and (g) only.
- Exercise 14.2

Do THE FOLLOWING EXERCISES from Lecture 15:

- Exercise 15.1 Do parts (a), (b), (c), and (d) only.
- Exercise 15.2

Do The following additional exercises.

P17. The goal of this exercise is to show that the usual matrix-vector multiplication algorithm is backward-stable when we regard the matrix as the input; see part (c). For simplicity, please assume all entries are real numbers. Always assume axioms (13.5) and (13.7) hold.
(a) Fix $x \in \mathbb{R}^{1}$. Show that if the problem is scalar multiplication, $f(a)=a x$ for $a \in \mathbb{R}^{1}$, then the obvious algorithm $\tilde{f}(a)=\mathrm{fl}(a) \otimes \mathrm{f}(x)$ is backward-stable.
(b) Fix $x \in \mathbb{R}^{2}$, a column vector. Show that if $a \in \mathbb{R}^{2}$, a column vector, then the obvious algorithm $\tilde{f}(a)=\mathrm{fl}\left(a_{1}\right) \otimes \mathrm{fl}\left(x_{1}\right) \oplus \mathrm{fl}\left(a_{2}\right) \otimes \mathrm{fl}\left(x_{2}\right)$ for the inner product problem $f(a)=a^{\top} x$ is backward-stable. (Hint. You must choose a vector norm to finish the proof.)
A proof by induction extends part (b) to show that the obvious inner product algorithm is backward-stable in any dimension; see Example 15.1. From now on you can assume it is true.
(c) Fix $x \in \mathbb{R}^{n}$. Show that if $A \in \mathbb{R}^{m \times n}$ then the obvious algorithm $\tilde{f}(A)$ for the product problem $f(A)=A x$ is backward-stable. (Hints. Express $A x$ using inner products. Do not bother with scalar entries of A or x. You must pick a vector norm and an induced norm.)
(d) Fix $A \in \mathbb{R}^{m \times n}$. Explain in at most 8 sentences why the obvious algorithm $\tilde{f}(x)$ for the problem $f(x)=A x$ is generally not backward-stable. However, this result depends on dimension. In fact, for what m, n is this $\tilde{f}(x)$ backward-stable? (Hints. The algorithm is the same as in part (c), but the input is x. Use what we know for inner products.)

Extra Credit. Is the standard algorithm for matrix-matrix multiplication backwardstable? Regard the problem with maximum flexibility, that is, as treating both factors as inputs: $F(A, B)=A B$ for $A \in \mathbb{R}^{m \times k}$ and $B \in \mathbb{R}^{k \times n}$. Explain in at most 10 sentences. (Hints. The answer depends on dimensions. Be precise and consider different cases in order to get full credit.)

