Assignment 7

Due Wednesday 1 November 2023 (revised), at the start of class

Please read Lectures 11,12,13,14,15 in the textbook *Numerical Linear Algebra* by Trefethen and Bau. This Assignment covers least squares, conditioning, and floating point.

DO THE FOLLOWING EXERCISES from Lecture 11:

• Exercise 11.3

DO THE FOLLOWING EXERCISES from Lecture 13:

• **Exercise 13.2** *Do parts* (a) *and* (b) *only.*

DO THE FOLLOWING ADDITIONAL EXERCISES.

P13. Suppose *A* is a 100×100 matrix with $||A||_2 = 20$ and $||A||_F = 21$. Give the sharpest possible lower bound on the 2-norm condition number of *A*. (*Hint. Write everything in terms of singular values, and then think about best cases for* $\kappa_2(A)$.)

P14. For each problem, compute the absolute condition number $\hat{\kappa}$ and the relative condition number κ ; generally both formulas will involve x.¹ Choose the most convenient norm, but make your choice explicit.² Comment on when the problem is well-conditioned or ill-conditioned; generally this answer also depends on x.

- **a)** Compute x^3 for x > 0.
- **b)** Compute $\cos x$ for real x.
- c) For $x \in \mathbb{C}^2$ compute $x_1 x_2$, the product of the entries.
- **d)** Fix $a \in \mathbb{R}^m$, a column vector. Compute the inner product a^*x for $x \in \mathbb{R}^m$.

P15. Consider the polynomial

$$p(x) = (x - 3)^{10}$$

= $x^{10} - 30x^9 + 405x^8 - 3240x^7 + 17010x^6 - 61236x^5$
+ $153090x^4 - 262440x^3 + 295245x^2 - 196830x + 59049$

(a) Por x = 2.85:0.01:3.15, plot p(x) by evaluating it via its coefficients $1, -30, 405, \ldots$

(b) Plot p(x) again on the same interval and same graph, using expression $(x - 3)^{10}$.

(c) In two or three sentences, compare and contrast the bad behavior here with the ill-conditioning phenomenon in Example 12.5 on page 92, i.e. Wilkinson's example.

¹You can use formulas (12.3) and (12.6) without justification.

²For **a**) and **b**) just use absolute values for the norm.

P16. This is a reading assignment. Actually read it! It's good.

Please read the following 12 page encyclopedia entry:

L. N. Trefethen, *Numerical Analysis*, in W. T. Gowers, editor, Princeton Companion to Mathematics, Princeton U. Press, 2008. people.maths.ox.ac.uk/trefethen/NAessay.pdf

Answer the following questions with a sentence or two at most:

- (i) Give a one-sentence version of Trefethen's definition of "numerical analysis."
- (*ii*) Is analysis of rounding errors the main business of numerical analysis? If not, what is?
- (iii) Gaussian elimination with pivoting is a matrix factorization. State it.
- *(iv)* Trefethen refers to Householder triangularization, Algorithm 10.1 in our textbook, as "QR factorization". But then what does the "QR algorithm" do?
- (*v*) What is the "central dogma" of numerical linear algebra?
- (*vi*) Fill the blank: "The discovery of _____ came quickly, but its theoretical analysis has proved astonishingly hard."
- (vii) What is the "the biggest unsolved problem in numerical analysis"?