
Math 614 Numerical Linear Algebra (Bueler) assigned 27 Nov. 2023; revised 2 Dec.

Assignment 10
Due Monday 11 December 2023, at 5 pm in my Chapman 101 box

Please read Lectures 24, 25, 26, 27, and 28 in the textbook Numerical Linear Algebra
by Trefethen and Bau. This Assignment mostly covers eigenvalues, including some
iterations which approximate them: power, inverse, and Rayleigh quotient iterations.
We will not get to the actual/practical QR algorithm for eigenvalues (Lecture 29), nor
to material beyond that.

DO THE FOLLOWING EXERCISES from Lecture 24:
• Exercise 24.1

DO THE FOLLOWING ADDITIONAL EXERCISES.

P19. An in place Gauss elimination algorithm uses no more memory to store L and
U than is already used to store A.

(a) Write a function with signature Z = iplu(A) which takes as input a square
m ×m matrix A and computes A = LU by Algorithm 20.1. It will not create separate
matrices L and U . It will produce a matrix Z which has the numbers ljk and ujk in the
corresponding locations. You will be able to recover matrices L and U as follows:

>> Z = iplu(A);
>> U = triu(Z)
>> L = tril(Z,-1) + diag(ones(m,1))

Demonstrate that iplu(A) works by applying it to the matrix A in (20.3) and recov-
ering the factors in (20.5).

(b) Now write another function with signature x = bslash(A,b) which solves
square systems Ax = b. It calls iplu(A) to compute the in-place LU factorization.
Then it solves the system from Z without forming L or U .1 It will have loops which im-
plement forward- and backward-substitution (Alg. 17.1) using the entries of Z. Show
it works by comparing to “\” on some randomly-generated 10× 10 system Ax = b:
>> x1 = bslash(A,b);
>> x2 = A \ b;
>> norm(x1 - x2) / norm(x2)

(c) Extra Credit Regarding stability, Algorithm 20.1 is not a good idea. Implement
Gauss elimination with partial pivoting (Algorithm 21.1) using an integer permutation
vector p for the row swaps. (Do not actually move values in memory.) Demonstrate
correctness of your updated bbslash(A,b)2 as in part (b). Then find an example for
which this updated version produces substantially reduced floating-point error.

1And, of course, without using MATLAB’s backslash operation!
2“Better backslash.”
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P20. A circulant matrix is one where constant diagonals “wrap around”:

(1) C =


c1 cm . . . c3 c2
c2 c1 cm c3
... c2 c1

. . . ...

cm−1
. . . . . . cm

cm cm−1 . . . c2 c1


Each entry of C ∈ Cm×m is determined from the entries c1, . . . , cm in its first column:

Cjk =

{
cj−k+1, j ≥ k,

cm+j−k+1, j < k.

Specifying the first column of a circulant matrix describes it completely.
An extraordinary fact about a circulant matrix is that it has a complete set of complex

eigenvectors that are known in advance, without knowing the eigenvalues. Specifically,
define fk ∈ Cm by

(2) (fk)j = exp

(
−i(j − 1)(k − 1)

2π

m

)
= e−i2π(k−1)(j−1)/m,

where, as usual, i =
√
−1. These vectors are waves, i.e. combinations of familiar sines

and cosines, and in fact this exercise can be regarded as how one “discovers” Fourier
series (and Fourier-type ideas generally). After some warm-up exercises you will show
in part (e) that Cfk = λkfk for a computable eigenvalue λk.

(a) Define the periodic convolution u ∗ w ∈ Cm of vectors u,w ∈ Cm by

(u ∗ w)j =
m∑
k=1

uµ(j,k)wk where µ(j, k) =

{
j − k + 1, j ≥ k,

m+ j − k + 1, j < k.

Show that u ∗ w = w ∗ u.

(b) Show that Cu = v ∗ u if C is a circulant matrix and v is the first column of C.

(c) Show that the vectors f1, . . . , fm defined in (2) are orthogonal. (Hints. Remember
the conjugate in the inner product. Then use a fact about finite geometric series.)

(d) For m = 20, use Matlab to plot the real parts of the vectors f1, . . . , f5, together in
a single figure. (Hint. They should look like discretized waves.)

(e) For a general circulant matrix, C in (1) above, give a formula for its eigenvalues
λk in terms of the entries c1, . . . , cm. That is, show via by-hand calculation that

Cfk = λkfk

where fk is given by (2). Your solution will contain a formula for λk.

P21. (a) Implement Algorithm 26.1, Householder reduction to Hessenberg form.
Specifically, build a code with the signature

H = hessen(A,stages)



3

Your code will check that A is square, print the stages if stages is true, and finally
return a Hessenberg matrix H such that A = QHQ∗ for some unitary Q. Note that
your code can discard the vectors vk after they are used.

(b) For a random 5 × 5 matrix A of your choice, run the code and show the four
stages A, Q∗

1AQ1, Q∗
2Q

∗
1AQ1Q2, and H = Q∗

3Q
∗
2Q

∗
1AQ1Q2Q3. (Hint. This illustrates the

cartoons on pages 197–198, in the A Good Idea subsection.) Use the built-in eig() to
show that the eigenvalues of A and H are the same to within rounding error.

(c) Construct a new 4 × 4 Hermitian matrix S and compute T=hessen(S). Check
that T is tridiagonal and Hermitian. Show that the eigenvalues of S and T are the same
within rounding error.

P22. (a) Implement Algorithm 27.3, Rayleigh quotient iteration. Specifically, write
a code with signature

[lam,v] = rqi(A,v0)

which returns an eigenvalue lam corresponding to the eigenvector v, and which starts
the iteration from a given vector v0. As a stopping criterion, to avoid a warning when
solving the linear system with the matrix B = A− λ(k−1)I , I suggest

rcond(B) < 10*eps

or equivalent; using Matlab or other documentation, explain what this criterion means.

(b) Show your code works by (i) reproducing the iterates λ(0), λ(1), λ(2) in Example
27.1, and (ii) by matching one of the eigenvalues and eigenvectors, computed by the
built-in command eig(), of a random 20× 20 Hermitian matrix.

Extra Credit A. Theorem 15.1 requires that your algorithm be backward stable. What
if it is merely stable according to the definition given in Lecture 14? To my surprise, I
was able to prove a theorem about the relative error which is nearly as strong. Show:

Theorem. Suppose a stable algorithm f̃ : X → Y is applied to solve a problem f : X → Y
with condition number κ on a computer satisfying (13.5), (13.7). Then there is a constant
γ ≥ 0 so that the relative errors satisfy

∥f̃(x)− f(x)∥
∥f(x)∥

= O ((κ(x) + γ)ϵmachine) as ϵmachine → 0.

Hints. Roughly follow the proof of Theorem 15.1. Replace “f̃(x) = f(x̃)” with f̃(x) =

f̃(x) − f(x̃) + f(x̃). You will need the triangle inequality in addition to steps already
in the proof of Theorem 15.1. Make it clear how the constant “γ” arises; what does it
depend on?


