Assignment 10
 Due Monday 11 December 2023, at 5 pm in my Chapman 101 box

Please read Lectures 24, 25, 26, 27, and 28 in the textbook Numerical Linear Algebra by Trefethen and Bau. This Assignment mostly covers eigenvalues, including some iterations which approximate them: power, inverse, and Rayleigh quotient iterations. We will not get to the actual/ practical QR algorithm for eigenvalues (Lecture 29), nor to material beyond that.

DO THE FOLLOWING EXERCISES from Lecture 24:

- Exercise 24.1

Do The following additional exercises.
P19. An in place Gauss elimination algorithm uses no more memory to store L and U than is already used to store A.
(a) Write a function with signature $Z=i p l u(A)$ which takes as input a square $m \times m$ matrix A and computes $A=L U$ by Algorithm 20.1. It will not create separate matrices L and U. It will produce a matrix Z which has the numbers $l_{j k}$ and $u_{j k}$ in the corresponding locations. You will be able to recover matrices L and U as follows:

```
>> Z = iplu(A);
>> U = triu(Z)
>> L = tril(Z,-1) + diag(ones (m, 1))
```

Demonstrate that iplu (A) works by applying it to the matrix A in (20.3) and recovering the factors in (20.5).
(b) Now write another function with signature $\mathrm{x}=\mathrm{bslash}(\mathrm{A}, \mathrm{b})$ which solves square systems $A x=b$. It calls iplu(A) to compute the in-place LU factorization. Then it solves the system from Z without forming L or $U .{ }^{1}$ It will have loops which implement forward- and backward-substitution (Alg. 17.1) using the entries of Z. Show it works by comparing to " \backslash " on some randomly-generated 10×10 system $A x=b$:

```
>> xl = bslash(A,b);
>> x2 = A \ b;
>> norm(x1 - x2) / norm(x2)
```

(c) Extra Credit Regarding stability, Algorithm 20.1 is not a good idea. Implement Gauss elimination with partial pivoting (Algorithm 21.1) using an integer permutation vector p for the row swaps. (Do not actually move values in memory.) Demonstrate correctness of your updated bbs lash (A, b) ${ }^{2}$ as in part (b). Then find an example for which this updated version produces substantially reduced floating-point error.

[^0]P20. A circulant matrix is one where constant diagonals "wrap around":

$$
C=\left[\begin{array}{ccccc}
c_{1} & c_{m} & \ldots & c_{3} & c_{2} \tag{1}\\
c_{2} & c_{1} & c_{m} & & c_{3} \\
\vdots & c_{2} & c_{1} & \ddots & \vdots \\
c_{m-1} & & \ddots & \ddots & c_{m} \\
c_{m} & c_{m-1} & \ldots & c_{2} & c_{1}
\end{array}\right]
$$

Each entry of $C \in \mathbb{C}^{m \times m}$ is determined from the entries c_{1}, \ldots, c_{m} in its first column:

$$
C_{j k}= \begin{cases}c_{j-k+1}, & j \geq k, \\ c_{m+j-k+1}, & j<k .\end{cases}
$$

Specifying the first column of a circulant matrix describes it completely.
An extraordinary fact about a circulant matrix is that it has a complete set of complex eigenvectors that are known in advance, without knowing the eigenvalues. Specifically, define $f_{k} \in \mathbb{C}^{m}$ by

$$
\begin{equation*}
\left(f_{k}\right)_{j}=\exp \left(-i(j-1)(k-1) \frac{2 \pi}{m}\right)=e^{-i 2 \pi(k-1)(j-1) / m} \tag{2}
\end{equation*}
$$

where, as usual, $i=\sqrt{-1}$. These vectors are waves, i.e. combinations of familiar sines and cosines, and in fact this exercise can be regarded as how one "discovers" Fourier series (and Fourier-type ideas generally). After some warm-up exercises you will show in part (e) that $C f_{k}=\lambda_{k} f_{k}$ for a computable eigenvalue λ_{k}.
(a) Define the periodic convolution $u * w \in \mathbb{C}^{m}$ of vectors $u, w \in \mathbb{C}^{m}$ by

$$
(u * w)_{j}=\sum_{k=1}^{m} u_{\mu(j, k)} w_{k} \quad \text { where } \quad \mu(j, k)= \begin{cases}j-k+1, & j \geq k \\ m+j-k+1, & j<k\end{cases}
$$

Show that $u * w=w * u$.
(b) Show that $C u=v * u$ if C is a circulant matrix and v is the first column of C.
(c) Show that the vectors f_{1}, \ldots, f_{m} defined in (2) are orthogonal. (Hints. Remember the conjugate in the inner product. Then use a fact about finite geometric series.)
(d) For $m=20$, use Matlab to plot the real parts of the vectors f_{1}, \ldots, f_{5}, together in a single figure. (Hint. They should look like discretized waves.)
(e) For a general circulant matrix, C in (1) above, give a formula for its eigenvalues λ_{k} in terms of the entries c_{1}, \ldots, c_{m}. That is, show via by-hand calculation that

$$
C f_{k}=\lambda_{k} f_{k}
$$

where f_{k} is given by (2). Your solution will contain a formula for λ_{k}.
P21. (a) Implement Algorithm 26.1, Householder reduction to Hessenberg form. Specifically, build a code with the signature

$$
H=\text { hessen }(A, s t a g e s)
$$

Your code will check that A is square, print the stages if stages is true, and finally return a Hessenberg matrix H such that $A=Q H Q^{*}$ for some unitary Q. Note that your code can discard the vectors v_{k} after they are used.
(b) For a random 5×5 matrix A of your choice, run the code and show the four stages $A, Q_{1}^{*} A Q_{1}, Q_{2}^{*} Q_{1}^{*} A Q_{1} Q_{2}$, and $H=Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} A Q_{1} Q_{2} Q_{3}$. (Hint. This illustrates the cartoons on pages 197-198, in the A Good Idea subsection.) Use the built-in eig () to show that the eigenvalues of A and H are the same to within rounding error.
(c) Construct a new 4×4 Hermitian matrix S and compute $\mathrm{T}=$ hessen (S). Check that T is tridiagonal and Hermitian. Show that the eigenvalues of S and T are the same within rounding error.

P22. (a) Implement Algorithm 27.3, Rayleigh quotient iteration. Specifically, write a code with signature

$$
[\mathrm{lam}, \mathrm{v}]=\operatorname{rqi}(\mathrm{A}, \mathrm{v} 0)
$$

which returns an eigenvalue 1 am corresponding to the eigenvector v, and which starts the iteration from a given vector v 0 . As a stopping criterion, to avoid a warning when solving the linear system with the matrix $B=A-\lambda^{(k-1)} I$, I suggest

```
rcond(B) < 10*eps
```

or equivalent; using Matlab or other documentation, explain what this criterion means.
(b) Show your code works by (i) reproducing the iterates $\lambda^{(0)}, \lambda^{(1)}, \lambda^{(2)}$ in Example 27.1, and (ii) by matching one of the eigenvalues and eigenvectors, computed by the built-in command eig (), of a random 20×20 Hermitian matrix.

Extra Credit A. Theorem 15.1 requires that your algorithm be backward stable. What if it is merely stable according to the definition given in Lecture 14? To my surprise, I was able to prove a theorem about the relative error which is nearly as strong. Show:
Theorem. Suppose a stable algorithm $\tilde{f}: X \rightarrow Y$ is applied to solve a problem $f: X \rightarrow Y$ with condition number κ on a computer satisfying (13.5), (13.7). Then there is a constant $\gamma \geq 0$ so that the relative errors satisfy

$$
\frac{\|\tilde{f}(x)-f(x)\|}{\|f(x)\|}=O\left((\kappa(x)+\gamma) \epsilon_{\text {machine }}\right) \quad \text { as } \quad \epsilon_{\text {machine }} \rightarrow 0
$$

Hints. Roughly follow the proof of Theorem 15.1. Replace " $\tilde{f}(x)=f(\tilde{x})$ " with $\tilde{f}(x)=$ $\tilde{f}(x)-f(\tilde{x})+f(\tilde{x})$. You will need the triangle inequality in addition to steps already in the proof of Theorem 15.1. Make it clear how the constant " γ " arises; what does it depend on?

[^0]: ${ }^{1}$ And, of course, without using MATLAB's backslash operation!
 2"Better backslash."

