Name:

SOLUTIONS

Math 614 Numerical Linear Algebra (Bueler)

Wednesday 15 November 2023

Midterm Quiz 2

In-class or proctored. No book, notes, electronics, calculator, internet access, or communication with other people. 100 points possible.

65 minutes maximum!

1. (10 pts) Suppose $f: X \to Y$ is a problem, where X and Y are normed vector spaces. For $x \in X$, define the relative condition number of the problem:

$$\kappa(x) = \lim_{\|S\| \to 0} Sx \neq 0 \qquad \frac{\|f(x+Sx) - f(x)\|_Y}{\|Sx\|_X}$$

2. (15 pts) Our textbook TREFETHEN & BAU defines an idealized floating point system \mathbf{F} , also written \mathbb{F} . Define/describe it. (*Hints*. A floating point system is scientific notation based on a base β and a precision t. Both β and t are integers; what are their ranges? Describe the allowed fractions and exponents, and where they appear.)

$$F = \begin{cases} 0 \end{cases} \quad \text{U} \quad \text{f} \quad \text{f} \quad \text{ge} \\ \text{B} = \end{cases}$$

$$\beta \geq 2 \quad \text{integer}$$

$$t \geq 1 \quad \text{integer}$$

$$e \quad \text{any integer}$$

$$\beta = \begin{cases} \text{f} \quad \text{f}$$

3. (a) (5 pts) State axiom (13.5).

if
$$x \in \mathbb{R}$$
 then $f(x) \in \mathbb{F}$ satisfies

 $f(x) = x(1+\epsilon)$ for some $\epsilon \in \mathbb{R}$

So that $|\epsilon| \leq \epsilon$ mochin

(b) (5 pts) State axiom (13.7).

if
$$x,y \in \mathbb{R}$$
 and $x = +, -, x, + then$

$$\times \otimes y = (x \times y)(1+\varepsilon) \text{ for some } \varepsilon \in \mathbb{R}$$
so that $|\varepsilon| \leq \varepsilon_{max}$

4. (15 pts) Suppose $f: X \to Y$ is a problem and $\tilde{f}: X \to Y$ is an algorithm to compute (approximate) that problem on a computer satisfying axioms (13.5) and (13.7). Define what it means for the algorithm \tilde{f} to be backward stable for the input $x \in X$.

$$f(x) = f(\tilde{x})$$
 for some \tilde{x} so that
$$\frac{\|\tilde{x} - x\|_{X}}{\|\tilde{x}\|_{X}} = O(\epsilon_{\text{machine}})$$

5. (7 pts) Show that (1 + O(t))(1 + O(t)) = 1 + O(t) as $t \to 0$.

pf: Given
$$f_i(t)$$
 so that $|f_i(t)| \le c_i |t|$, $i = 1/3$ for t sufficiently close to zero, we are to show
$$|(1+f_i(t))(1+f_2(t))-1| \le C|t|.$$

But $|(1+f_1(t))(1+f_2(t))-1| = |(1+f_1(t)+f_2(t)+f_1(t))f_1(t)|$ $\leq |f_1(t)|+|f_2(t)|+|f_1(t)||f_2(t)||$ $\leq |f_1(t)|+|f_2(t)|+|f_1(t)||f_2(t)|$ $\leq |f_1(t)|+|f_2(t)|+|f_2(t)||f_2(t)|$ $\leq |f_1(t)|+|f_2(t)|+|f_2(t)||f_2(t)|$ $\leq |f_1(t)|+|f_2(t)|+|f_2(t)||f_2(t)|$ $\leq |f_1(t)|+|f_2(t)|+|f_2(t)||f_2(t)|$ $\leq |f_1(t)|+|f_2(t)|+|f_2(t)|$ $\leq |f_1(t)|+|f_2(t)|+|f_2(t)|$ $\leq |f_1(t)|+|f_2(t)|+|f_2(t)|$ $\leq |f_1(t)|+|f_2(t)|+|f_2(t)|$ $\leq |f_1(t)|+|f_2(t)|+|f_2(t)|$ $\leq |f_1(t)|+|f_2(t)|$ $\leq |f_1$

6. (7 pts) Consider the problem (function) $f(x) = x^4$ on real numbers. Compute the absolute condition number $\hat{\kappa}(x)$ and the relative condition number $\kappa(x)$.

$$J(x) = \begin{bmatrix} 4x^3 \end{bmatrix} \quad 3 \quad 1 \times 1 \quad \text{matrix} \quad 0$$

$$\hat{\chi}(x) = |J(x)| = |4/x|^2$$

$$\chi(x) = \frac{|J(x)|}{|f(x)|/|x|} = \frac{|4/x|^2 \cdot |x|}{|x|^4} = 4$$

Suppose $A \in \mathbb{C}^{m \times m}$ is invertible, and that $b \in \mathbb{C}^m$. Explain, via major steps, how to use the QR factorization to solve the linear system Ax = b. How much work, i.e. how many floating point operations, is required for each step?

(1) A = QR (by Householder or 65)

n(m3) work

(by mat-rec) y= Q*b O(m2) work

solve Rx=y (by back-substitution) () (m2) work

Suppose $A \in \mathbb{C}^{m \times n}$ is full rank, and that $m \geq n$. Suppose $b \in \mathbb{C}^m$. Explain, via major steps, how to use the reduced SVD factorization to solve the overdetermined system "Ax = b" by least squares. How much work is required for each step?

A= UTV* (by

O(m n²)? will ge Û*b (by most -vec) (mn) work

· - y (n scalar divisions)

(by mat-rec) O(n2) work

¹For problems 7 and 8, use big-O notation to communicate the amount of work at leading order in m and/or n, as they go to infinity. You do not need to prove your big-O usage.

- **9.** Suppose $x \in \mathbb{R}^2$ and that $f(x) = x_1^2 + x_2^2$.
- (a) (4 pts) Write the obvious floating point algorithm for computing f, using notation $f(\cdot)$, \oplus , \otimes :

$$\tilde{f}(x) = f(x_1) \otimes f(x_1) \oplus f(x_2) \otimes f(x_2)$$

(b) (8 pts) Assuming a computer satisfying axioms (13.5) and (13.7), show that the above algorithm is backward stable. You may assume here, without proof, that (1 + O(t))(1 + O(t)) = 1 + O(t) and $\sqrt{1 + O(t)} = 1 + O(t)$ as $t \to 0$.

$$\widehat{f}(x) = x_{1}(1+\epsilon_{1}) \otimes x_{1}(1+\epsilon_{2}) \oplus x_{2}(1+\epsilon_{2}) \otimes x_{2}(1+\epsilon_{2}) \\
\widehat{f}(x) = x_{1}(1+\epsilon_{1}) \otimes x_{1}(1+\epsilon_{2}) \oplus x_{2}(1+\epsilon_{2}) \otimes x_{2}(1+\epsilon_{2}) \\
\widehat{f}(x) = x_{1}(1+\epsilon_{1})^{2}(1+\epsilon_{2}) + x_{2}^{2}(1+\epsilon_{2})^{2}(1+\epsilon_{2})(1+\epsilon_{2})$$
Let $\widehat{x}_{1} = (1+\epsilon_{1}) \cdot (1+\epsilon_{2}) \cdot (1+\epsilon_{2})^{2}(1+\epsilon_{2})^{2}(1+\epsilon_{2}) \cdot (1+\epsilon_{2}) \cdot (1+\epsilon_{2})$

Extra Credit. (2 pts) Assuming that the result in **9** (b) above can be extended to $x \in \mathbb{R}^m$ for any m, argue that the obvious algorithm for computing the 2-norm of a vector is backward stable. Along the way you will need to describe, and briefly justify, the expected stability properties of a fifth arithmetic operation.

see lut page

10. (8 pts) Suppose I invent a new way of solving linear systems which is even more stable than the Householder reflection QR method. The Bueler algorithm solves Ax = b in a backward stablle manner, with numerical result $\tilde{x} \in \mathbb{C}^m$ satisfying $(A + \delta A)\tilde{x} = b$ where $\|\delta A\|_2/\|A\|_2 \leq 30\log_{10}(m)\epsilon_{\text{machine}}$. On a computer with $\epsilon_{\text{machine}} = 10^{-16}$, I apply the Bueler algorithm to solve a linear system for a certain matrix $A \in \mathbb{C}^{1000 \times 1000}$ for which I know that the 2-norm condition number is $\kappa_2(A) = 10^9$. How many digits of accuracy will I have in the answer \tilde{x} ? (Hints. Start by being clear on what is the problem. Apply big ideas precisely, but avoid little algebra.)

We know about the Bucker algorithm that
$$\ddot{x} = f(A) = f(\ddot{A})$$
 where $\ddot{A} = A + \delta A$ and $\frac{||\ddot{A} - A||_2}{||A||_2} = \frac{||SA||_2}{||A||_2} = \frac{30 \log_{10}(M)}{||A||_2}$ by $\frac{||f(A) - f(A)||_2}{||f(A)||_2} = \chi(A) \cdot O(\sum_{machine})$ in this case in this case in this case $\chi(A) = ||A||_1 ||A||_2$ is relicced $\frac{1}{2}$ of solving lear here $\chi(A) = ||A||_1 ||A||_2$ is relicced $\frac{1}{2}$ of solving we get $\frac{||\ddot{x} - \chi||_2}{||\chi||_2} = 10^9$. $\chi(A) = 10^9$, $\chi(A) = 10^9$,

²That is, $\|\delta A\|_2/\|A\|_2 = O(\epsilon_{\text{machine}})$ where the constant is $C = 30 \log_{10}(m)$. This is a much smaller constant than the one for Householder QR.

The problem is
$$f(x) = \int_{i=1}^{\infty} x_i^2 = ||x||_2$$
.

$$\int \overline{x} = \int \overline{x}$$
 where $\frac{|\overline{x} - x|}{|x|} = O(\underline{\varepsilon}_{machine})$.

This is reasonable because (e.g.) Newton's method should get almost all bits of \sqrt{x} correct for $x \ge 0$. Then

$$\widetilde{f}(x) = \sqrt{\sum_{i=1}^{m} x_i \otimes x_i}$$

A proof by induction, extending 9(6),

shows $g(x) = \sum_{i=1}^{m} x_i \otimes x_i$ is backward

stable for $g(x) = \sum_{i=1}^{m} x_i^2$. Then $\widetilde{f}(x) = \widetilde{g}(x)$.

So $\widetilde{f}(x) = \widetilde{g}(x) = \widetilde{g}(x) + s_{8}$ $\left[\frac{|s_{9}|}{|g|} = o(\varepsilon_{m})\right]$

 $= \int g(\widehat{x}) + Sg = \int g(\widehat{\widehat{x}}) \qquad \left[\widetilde{\widehat{x}} \text{ has enthis} \right]$ multiplied by ≈ 1

 $f(\tilde{x}).$

I think one can show 1/2-x/(1x1)= 0 (Emplie).