Name: SOL UTID/US

Math 614 Numerical Linear Algebra (Bueler) Wednesday 15 November 2023

Midterm Quiz 2

In-class or proctored. No book, notes, electronics, calculator, internet
access, or communication with other people. 100 points possible.
65 minutes maximum!

1. (10 pts)  Suppose f: X — Y is a problem, where X and Y are normed vector spaces. For x € X,
define the relative condition number of the problem:
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2. (15 pts) Our textbook TREFETHEN & BAU defines an idealized floating point system F', also
written F. Define/describe it. (Hints. A floating point system is scientific notation based on a base
and a precision t. Both 8 and t¢ are integers; what are their ranges? Describe the allowed fractions and

exponents, and where they appear.)
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3. (a) (5 pts)  State axiom (13.5).
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(b) (5 pts)  State axiom (13.7).
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4. (15 pts) Suppose f : X — Y is a problem and f : X — Y is an algorithm to compute
(approximate) that problem on a computer satisfying axioms (13.5) and (13.7). Define what it means
for the algorithm f to be backward stable for the input z € X.
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5. (7pts)  Show that (1+O(t))(1+O(t)) =1+ O0(t) ast — 0.
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6. (7 pts) Consider the pro blm(f cti n) f(x) = 4 eal numbers. Compute the absolute
condition number #(z) and the relative condition number (m)
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7. (8pts) Suppose A € C™*™ is invertible, and that b € C™. Explain, via major steps, how to use
the QR factorization to solve the linear system Az = b. How much work,' i.e. how many floating point
operations, is required for each step?
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8. (8 pts)  Suppose A € C™*" is full rank, and that m > n. Suppose b € C™. Explain, via major
steps, how to use the reduced SVD factorization to solve the overdetermined system “Axz = b” by least
squares. How much work is required for each step? n )!
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Iror problems 7 and 8, use big-O notation to communicate the amount of work at leading order in m and/or n, as they

go to infinity. You do not need to prove your big-O usage.



9. Suppose = € R? and that f(z) = 22 + 3.
(a) (4 pts)  Write the obvious floating point algorithm for computing f, using notation f4(-), ®, ®:
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(b) (8 pts)  Assuming a computer satisfying axioms (13.5) and (13.7), show that the above algorithm
is backward stable. You may assume here, without proof, that (1 + O(¢))(1 + O(t)) = 1 + O(t) and
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Extra Credit. (2 pts)  Assuming that the result in 9 (b) above can be &(M(ﬁ-db%’r e R™ for any [ ')
m, argue that the obvious algorithm for computing the 2-norm of a vector is backward stable. Along the

way you will need to describe, and briefly justify, the expected stability properties of a fifth arithmetic
operation.
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10. (8 pts)  Suppose I invent a new way of solving linear systems Whl({h is even more stable than the QGCE
Householder reflection QR method. The Bueler algorithm solves Ax b in a backward stablle manner

with numerical result & € C™ satisfying (A + 0A)Z = b where ||5AH2/H;17|2 < 301og;(M)€emachine-> On

a computer with emachine = 1076, T apply the Bueler algorithm to solve a linear system for a certain

matrix A € C1000x1000 for which I know that the 2-norm condition number is k3(A) = 10°. How many

digits of accuracy will I have in the answer Z? (Hints. Start by being clear on what is the problem.

Apply big ideas precisely, but avoid little algebra.)
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