Review Topics (revised) for in-class Midterm Quiz 1 on
 Wednesday 11 October 2023

The Midterm Quiz will cover Lectures 1, 2, 3, 4, 5, 6, 7 in Trefethen \& Bau. The problems will be of these types: state definitions, state theorems, state algorithms (as pseudocode or Matlab), describe or illustrate geometrical ideas, basic applications of theorems, quick calculations, prove simple theorems/corollaries.

Definitions. Know how to define:

- matrix-vector product; matrix-matrix product
- adjoint; hermitian; transpose
- inner product; outer product
- unitary
- $\|\cdot\|_{p}$ of a vector in \mathbb{C}^{m} for any $1 \leq p \leq \infty$
- induced matrix norm $\|\cdot\|$
- Frobenius matrix norm $\|\cdot\|_{F}$
- projector; orthogonal projector
- eigenvalue; eigenvector
- singular value

Matrix Factorizations and Constructions. Know the properties of the factors in each factorization below. (For example, \hat{U} has orthonormal columns and is of same size as A in the $m \geq n$ case of the reduced SVD factorization $A=\hat{U} \hat{\Sigma} V^{*}$.) Assume $A \in \mathbb{C}^{m \times n}$ unless otherwise stated. Be able to use the factorization in simple calculations. Be able to compute the factorization by hand in sufficiently small and simple cases.

- full SVD: $A=U \Sigma V^{*}$
- reduced SVD, $m \geq n: A=\hat{U} \hat{\Sigma} V^{*}$
- full $\mathrm{QR}, m \geq n: A=Q R$
- reduced QR, $m \geq n: A=\hat{Q} \hat{R}$
- eigenvalue, $m=n: A=X \Lambda X^{-1}$
\leftarrow not always possible!
- orthogonal projector onto range $(A): P=\hat{Q} \hat{Q}^{*}=A\left(A^{*} A\right)^{-1} A^{*}$

Algorithms. Be able to state these algorithms, including the amount of work to leading order.

- matrix-vector and matrix-matrix products
- Alg. 7.1: classical Gram-Schmidt for $\hat{Q} \hat{R}$
- high-level algorithm to solve $A x=b$ when invertible $A=U \Sigma V^{*}$ has known SVD
- high-level algorithm to solve $A x=b$ when invertible $A=Q R$ has known QR decomposition

Facts and Formulas. Know as facts. Be able to prove unless otherwise stated.

- if A, B are invertible matrices then $(A B)^{-1}=B^{-1} A^{-1}$
- if A, B are matrices so that $A B$ is defined then $(A B)^{*}=B^{*} A^{*}$
- Cauchy-Schwarz: $\left|x^{*} y\right| \leq\|x\|\|y\| \quad$ [proof not required]
- invariance of $\|\cdot\|_{2}$ and $\|\cdot\|_{F}$ matrix norms under unitaries
- $\|A\|_{F}=\sqrt{\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}}$
- $\|A\|_{2}=\sigma_{1}$
- for $A \in \mathbb{C}^{m \times n}$ with $m \geq n, A$ has full rank if and only if $A^{*} A$ is nonsingular
- $\operatorname{rank}(A)$ is number of nonzero singular values (in exact arithmetic)
- if $m=n$ then $|\operatorname{det}(A)|=\prod_{i=1}^{m} \sigma_{i}$
- the singular values of A are the square roots of the eigenvalues of $A^{*} A$
- if P is an (orthogonal) projector then $I-P$ is an (orthogonal) projector
- if P is an orthogonal projector then $I-2 P$ is unitary

Ideas. Please be comfortable with the following ideas! Some ideas correspond to theorems, but otherwise it is just a perspective or paradigm.

- L1 and L2: how to think about $A x, A^{-1} b, Q x, Q^{*} b$
- L4: the image of the unit sphere under any $m \times n$ matrix is a hyperellipsoid
- L5: sums like this are optimal (in what sense?) approximations of A :

$$
A_{\nu}=\sum_{j=1}^{\nu} \sigma_{j} u_{j} v_{j}^{*}
$$

- L6: given A, the orthogonal projector onto range (A) is constructable . . know the formulas ... full rank versus not full rank?
- L7: construction of orthogonal functions (e.g. orthogonal polynomials) is an application of the Gram-Schmidt process, and/or of $A=Q R$, when the columns of A are infinitely long

