Name:			

Math 614 Numerical Linear Algebra (Bueler)

Wednesday 15 November 2023

Midterm Quiz 2

In-class or proctored. No book, notes, electronics, calculator, internet access, or communication with other people. 100 points possible.

65 minutes maximum!

1. (10 pts) Suppose $f: X \to Y$ is a problem, where X and Y are normed vector spaces. For $x \in X$, define the relative condition number of the problem:

$$\kappa(x) =$$

2. (15 pts) Our textbook Trefethen & Bau defines an idealized floating point system \mathbf{F} , also written \mathbb{F} . Define/describe it. (Hints. A floating point system is scientific notation based on a base β and a precision t. Both β and t are integers; what are their ranges? Now precisely describe the allowed fractions and exponents.)

3. (a) (5 pts) State axiom (13.5).

(b) (5 pts) State axiom (13.7).

4. (15 pts) Suppose $f: X \to Y$ is a problem and $\tilde{f}: X \to Y$ is an algorithm to compute (approximate) that problem on a computer satisfying axioms (13.5) and (13.7). Define what it means for the algorithm \tilde{f} to be backward stable for the input $x \in X$.

5. (7 pts) Show that (1 + O(t))(1 + O(t)) = 1 + O(t) as $t \to 0$.

6. (7 pts) Consider the problem (function) $f(x) = x^4$ on real numbers. Compute the absolute condition number $\hat{\kappa}(x)$ and the relative condition number $\kappa(x)$.

7. $(8 \ pts)$ Suppose $A \in \mathbb{C}^{m \times m}$ is invertible, and that $b \in \mathbb{C}^m$. Explain, via major steps, how to use the QR factorization to solve the linear system Ax = b. How much work, i.e. how many floating point operations, is required for each step?

8. $(8 \ pts)$ Suppose $A \in \mathbb{C}^{m \times n}$ is full rank, and that $m \geq n$. Suppose $b \in \mathbb{C}^m$. Explain, via major steps, how to use the reduced SVD factorization to solve the overdetermined system "Ax = b" by least squares. How much work is required for each step?

¹For problems 7 and 8, use big-O notation to communicate the amount of work at leading order in m and/or n, as they go to infinity. You do not need to prove your big-O usage.

- **9.** Suppose $x \in \mathbb{R}^2$ and that $f(x) = x_1^2 + x_2^2$.
- (a) (4 pts) Write the obvious floating point algorithm for computing f, using notation $f\ell(\cdot), \oplus, \otimes$:

$$\tilde{f}(x) =$$

(b) (8 pts) Assuming a computer satisfying axioms (13.5) and (13.7), show that the above algorithm is backward stable. You may assume here, without proof, that (1 + O(t))(1 + O(t)) = 1 + O(t) and $\sqrt{1 + O(t)} = 1 + O(t)$ as $t \to 0$.

Extra Credit (use space on blank pages). (2 pts) Assuming that the result in 9 (b) above can be extended to $x \in \mathbb{R}^m$ for any m, argue that the obvious algorithm for computing the 2-norm of a vector is backward stable. Along the way you will need to describe, and briefly justify, the expected stability properties of a fifth arithmetic operation.

10. (8 pts) Suppose I invent a new way of solving linear systems which is even more stable than the Householder reflection QR method. The Bueler algorithm solves Ax = b, for $A \in \mathbb{C}^{m \times m}$ invertible and $b \in \mathbb{C}^m$, in a backward stablle manner, with numerical result $\tilde{x} \in \mathbb{C}^m$ satisfying $(A + \delta A)\tilde{x} = b$ where $\|\delta A\|_2/\|A\|_2 \leq 30 \log_{10}(m)\epsilon_{\text{machine}}$. On a computer with $\epsilon_{\text{machine}} = 10^{-16}$, I apply the Bueler algorithm to solve a linear system for a certain matrix $A \in \mathbb{C}^{1000 \times 1000}$ for which I know that the 2-norm condition number is $\kappa_2(A) = 10^9$. How many digits of accuracy will I have in the answer \tilde{x} ? (Hints. Start by being clear on what is the problem. Apply big ideas precisely, but avoid little algebra.)

²That is, $\frac{\|\delta A\|_2}{\|A\|_2} = O(\epsilon_{\text{machine}})$ with constant $C = 30 \log_{10}(m)$. This C is much smaller than for Householder QR.

BLANK SPACE (FULL PAGE)

BLANK SPACE (FULL PAGE)