Math 614 Numerical Linear Algebra (Bueler)

Wednesday 11 October 2023

Midterm Quiz 1

In-class or proctored. No book, notes, electronics, calculator, internet access, or communication with other people. 100 points possible.

65 minutes maximum!

1. Let
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$
.

(a) (5 pts) What are the eigenvalues of A? (Give some brief explanation, or show work.)

(b) (10 pts) What is $||A||_2$? (Hint. Start as though you are finding singular values?)

- **2.** Suppose A is an invertible $m \times m$ matrix which has SVD $A = U\Sigma V^*$. Let σ_j denote the ordered singular values of A.
- (a) (7 pts) Write A^{-1} in terms of U, Σ , and V, and simplify.

(b) (8 pts) From **(a)**, explain why $||A^{-1}||_2 = 1/\sigma_m$.

Extra Credit A. (3 pts) Continuing problem 2 above, construct an SVD of A^{-1} from the SVD of A. (*Hint*. More subtle. Be careful with the ordering required for SVD.)

3. (10 pts) Show that if Q is unitary and λ is an eigenvalue of Q then $|\lambda|=1$. (Hint. If z is a complex number then $|z|^2=\bar{z}z$ where \bar{z} is the conjugate.)

4. $(10 \ pts)$ Suppose $q \in \mathbb{C}^m$ is a unit vector. Show $F = I - 2qq^*$ is unitary.

5. (a) $(10 \ pts)$ Let $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$. Write a pseudocode or MATLAB code for the standard algorithm which computes the matrix-vector product Ax.

(b) (5 pts) Exactly how many floating point operations occur in the above algorithm?

6. (a) (7 pts) Suppose $\hat{Q} \in \mathbb{C}^{m \times n}$ has orthonormal columns. The product $\hat{Q}^*\hat{Q}$ has a particularly simple form. State what the form is and prove it.

(b) $(8 \ pts)$ Continuing with the same matrix \hat{Q} , show that $P = \hat{Q}\hat{Q}^*$ is an orthogonal projector.

7. $(10 \ pts)$ By any by-hand method, compute a reduced QR decomposition of

$$A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

8. (5 pts) Suppose $A \in \mathbb{C}^{m \times n}$ and that $\|\cdot\|$ is a norm on \mathbb{C}^n and that $\|\cdot\|'$ is a norm on \mathbb{C}^m . Define the induced matrix norm $\|A\|$. (Full credit requires using the correct norms in the correct places.)

9. (5 pts) Suppose P is an orthogonal projector. Show I-P is an orthogonal projector.

Extra Credit B. (3 pts) Suppose $A \in \mathbb{R}^{3\times 3}$, and suppose we know the value of the following norms: $||A||_2 = 10$, $||A^{-1}||_2 = 1$, $||A||_F = 11$. Find all singular values of A.

BLANK SPACE (FULL PAGE)