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Summary: Why Finite Difference Methods Work
Chapter 2 of the textbook (R. J. LeVeque, 2007) starts with the ODE BVP example

u′′(x) = f(x), u(0) = α, u(1) = β.

The book constructs a practical finite difference (FD) numerical method for this example. Then
the book explains why the numerical solution will converge to the exact solution as we refine
the grid (m → ∞ and h → 0). The argument is “consistency + stability =⇒ convergence,”
the useful direction of the Lax equivalence theorem. This summary puts the argument on
one page, with details suppressed. Note that stages 1 and 2 compute a numerical solution.
Stages 3 and 4 are about why you get convergence.

Stage 1. Apply scheme to linear DE. Choose the grid/mesh, including number of unknowns m
and spacing h > 0. Apply your FD discretization or scheme; for each h you seek the values Uh

j in a
vector Uh ∈ Rm. Your scheme creates a family of matrices Ah and right-hand sides F h, thus linear
systems: (

differential equation (DE)
and boundary/initial conditions

)
→ AhUh = F h

Stage 2. Solve the scheme. Numerically solve the system of (linear) algebraic equations for a
given h. Abstractly this is:

AhUh = F h → Uh = (Ah)−1F h

Stage 3. LTE and error equation. Let Ûh
j = u(xj) be the grid values of the exact solution u(x) of

your DE. (Note: u(x) is generally unknown!) Define the local truncation error (LTE) as the residual
from the scheme, when it is applied to the exact solution,

τh = AhÛh − F h.

A Taylor’s theorem computation gives the order of accuracy p: ∥τh∥ = O(hp). If p > 0 then the scheme
is consistent. Define the numerical error Eh = Uh − Ûh. Subtract for the error equation: AhEh = −τh.

Stage 4. Show stability to show convergence. Show stability: there is C > 0 so that ∥(Ah)−1∥ ≤ C
for all h > 0. (Stability may be difficult to show!) Since Ah is invertible, the error equation has a
solution: Eh = −(Ah)−1τh. Because ∥τh∥ = O(hp), get convergence at rate p:

∥Eh∥ = ∥ − (Ah)−1τh∥ ≤ ∥(Ah)−1∥∥τh∥ ≤ CO(hp) = O(hp)


