1st-versus-2nd order equations, and singular perturbations

1. Solve by hand:

$$u'(x) = 0, \qquad u(0) = \alpha$$

2. Solve by hand:

$$u'(x) = 0,$$
 $u(0) = \alpha,$ $u(1) = \beta$

3. Solve by hand:

$$u''(x) = 0,$$
 $u(0) = \alpha,$ $u(1) = \beta$

4. Solve by hand:

$$0.01u''(x) + u'(x) = 0,$$
 $u(0) = \alpha,$ $u(1) = \beta$

5. Sketch the graphs of all solutions from the previous page on the same axes, in the case where $\alpha=2$ and $\beta=-1$. (*Make it big and label it clearly. Note that one of you sketches represents what happens for* $\epsilon u''(x)+u'(x)=0$, $u(0)=\alpha$, $u(1)=\beta$, when $\epsilon>0$ is small.)

6. Sketch what you think the solution of

$$\epsilon u''(x) - u'(x) = 0, \qquad u(0) = \alpha, \quad u(1) = \beta$$

will look like if $\epsilon>0$ is very small.