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Summary: Why Finite Difference Methods Work
Chapter 2 of the textbook (R. J. LeVeque, 2007) starts with the ODE BVP example

u′′(x) = f(x), u(0) = α, u(1) = β.

It constructs a practical finite difference (FD) numerical method on this example. Then it ex-
plains why the numerical solution will converge to the exact solution as we refine the grid
(m → ∞ and h → 0). We will use the same basic “consistency + stability =⇒ con-
vergence” strategy on all problems, the Lax equivalence theorem. This summary puts the
whole strategy on one page, for linear DEs, with details suppressed.

To use this as a worksheet: Fill in the extra space, or the reverse side, with your details!

Stage 1. Apply scheme to DE. Choose the grid/mesh, including number of unknowns m and
spacing h. Apply your FD discretization or scheme; it creates a family of matrices {Ah}:(

differential equation (DE)
and boundary/initial conditions

)
=⇒ AhUh = F h

Stage 2. Solve the scheme. Numerical solution of the system of (linear) algebraic equations:

AhUh = F h =⇒ Uh = (Ah)−1F h

Stage 3. LTE and error equation. Let Ûh
j = u(xj) be the grid values of the exact solution u(x) of

your DE. (You may not know u(x)!) Define the local truncation error (LTE) as the residual from the
scheme, when it is applied to the exact solution:

τh = AhÛh − F h = O(hp)

Taylor’s theorem generates the order of accuracy p, and if p > 0 then the scheme is consistent. Defining
the numerical error Eh = Uh − Ûh, get:

AhEh = −τh =⇒ Eh = −(Ah)−1τh

Stage 4. Apply stability to show convergence. Show stability: there is C > 0 so that ∥(Ah)−1∥ ≤ C
for all h > 0. (Stability may be difficult to show!) Because ∥τh∥ = O(hp), get convergence at rate p:

∥Eh∥ = ∥ − (Ah)−1τh∥ ≤ ∥(Ah)−1∥∥τh∥ ≤ CO(hp) = O(hp)


