Yon Neumann analysis: plug and chug

Section 9.6 of the textbook (R. J. LeVeque, 2007) presents vol Neumann analysis without emphasizing how people actually do the analysis. This worksheet exercises the standard style. ${ }^{1}$

Example. FTCS on heat equation. It is easiest to explain the idea relative to an example. Suppose we apply the FTCS scheme to the heat equation $u_{t}=D u_{x x}$ with constant diffusivity $D>0$:

$$
\begin{equation*}
\frac{U_{j}^{n+1}-U_{j}^{n}}{k}=D \frac{U_{j-1}^{n}-2 U_{j}^{n}+U_{j+1}^{n}}{h^{2}} \tag{1}
\end{equation*}
$$

To find what time steps $k>0$ would be stable for a given spacing $h>0$, vo Neumann substituted

$$
\begin{equation*}
U_{j}^{n}=g(\xi)^{n} e^{i j h \xi} \tag{2}
\end{equation*}
$$

into scheme (1), where $\xi \in \mathbb{R}$ is the wave number for the spatial wave $e^{i j h \xi}$, in which $i=\sqrt{-1} \in \mathbb{C}$ (as usual). The scalar function $g(\xi)$ is called the amplification factor of the scheme.

The spatial wave is complex, but it really is a wave. In fact, for the interval $0 \leq x \leq 1$ the grid is $x_{j}=j h$ and thus

$$
e^{i j h \xi}=e^{i \xi x_{j}}=\cos \left(\xi x_{j}\right)+i \sin \left(\xi x_{j}\right)
$$

Now we want to find $g(\xi)$. To compute it, substitute form (2) into scheme (1). Indices " $n+1$," " $j-$ 1, " and " $j+1$ " will turn into powers. Then use the properties of the exponential. After simplification and trigonometric identities-do the details in Exercise 1-we get

$$
g(\xi)=1-\frac{4 D k}{h^{2}} \sin ^{2}\left(\frac{\xi h}{2}\right)
$$

Absolute stability $\left|U_{j}^{n+1}\right| \leq\left|U_{j}^{n}\right|$ corresponds to $|g(\xi)| \leq 1$ for all $\xi \in \mathbb{R}$. For this scheme ${ }^{2}$ we get the condition $k \leq \frac{h^{2}}{2 D}$, which tells us that the time step k must be very small if the spacing h is small.

Exercise 1. FTCS on heat equation. Label the stencil. Then fill in the above details.

$$
\begin{aligned}
& {\left[u_{t}=D u_{x x} \Rightarrow(1)\right]} \\
& \text { put } U_{j}^{n}=g(3)^{n} e^{i j h 3} \text { into (1): } \\
& \underline{g(\xi)^{n+1} e^{i j h 3}-g(\xi)^{n} e^{i j h \xi}}=g(3)^{n} e^{i(j-1) k \xi}-2 g(3)^{n} e^{i j h 3} \\
& \underbrace{k}_{g(3) 2 e^{-i j 5} ;}=\frac{+g(3)^{n} e^{i(i+1) h^{3}}}{h^{2}} \\
& \frac{g(3)-1}{k}=D \frac{e^{-i h 3}-2+e^{i h \xi}}{h^{2}} \Rightarrow g(3)=1+h^{2} R\left(e^{-i h 3}+e^{i h 3}-2\right) \\
& =1+R(2 \cos (x)-2) \\
& =1-2 R(1-\cos (48)) \\
& { }^{1} \text { The textbook - entually says it clearly in section } 10.5 \text {. }
\end{aligned}
$$

${ }^{2}$ The same condition is derived via MOL in section 9.3 , and then y yon Newman analysis in section 9.6.

I did not give you enough space! Only highlight are shown.
Exercise 2. Crank-Nicolson on heat equation. Label the stencil. State the scheme. Do the analysis. put $U_{j}^{n}=g(3)^{n} e^{i j h 3}$ into $C N$ scheme and cancel:

$$
\frac{g(\xi)-1}{k}=\frac{D}{2 h^{2}}\left(g(\xi) e^{-i h \xi}-2 g(\xi)+g(\xi) e^{i h \xi}+e^{-i h z}-2+e^{i h \xi}\right)
$$

rearrange, use $\cos \theta=\frac{1}{2}\left(e^{-i \theta}+e^{i \theta}\right)$, use $R=D k / h^{2}$:

$$
(R-R \cos (h \xi)+1) g(\xi)=1+R \cos (h \xi)-R
$$

rearrange use $\sin ^{2} \theta=\frac{1}{2}(1-\cos (2 \theta))$:
stabk for any

$$
g(\xi)=\frac{1-2 R \sin ^{2}(h 3 / 2)}{1+2 R \sin ^{2}(h 3 / 2)} \Rightarrow \begin{gathered}
|g(3)| \leqslant 1 \\
\text { feral } 3
\end{gathered} \Rightarrow K>0
$$

Exercise 3. FTCS on the advection equation $u_{t}+a u_{x}=0$ with a constant. Write down the scheme,
$\frac{\text { scheme: }}{\text { draw and label a stencil, and do the analysis. }} \frac{U_{j}^{n+1}-U_{j}^{n}}{k}+a \frac{U_{j+1}^{n}-U_{j-1}^{n}}{2 h}=0$

put $U_{j}^{n}=g(3)^{n} e^{i j h \xi}$ into scheme, cancel, use $r=a k / n$:

$$
g(3)-1+\frac{1}{2} r\left(e^{i h z}-e^{-i h 3}\right)=0
$$

use $\sin \theta=\left(e^{+i \theta}-e^{-i \theta}\right)(2 i)$, rearrange:

$$
g(\xi)=1-i r \sin (h 3)
$$

$|g(3)|>1$ for $k \neq 0$, $3 \neq 0$
not stable
magnitude: $|g(3)|=\sqrt{1+r^{2} \sin ^{2}(h 3)}$ for any k
Exercise 4. CTCS (leapfrog) on advection equation. ${ }_{n}$ Again.
scheme: $\quad \frac{u_{j}^{n+1}-u_{j}^{n-1}}{2 k}+a \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 h}=0$
put $U_{j}^{n}=\ldots$ into scheme, cancel, use $r=a k / h$:

$$
g(\xi)-g(\xi)^{-1}+r\left(e^{i h 3}-e^{-i h 3}\right)=0
$$

if $|r| \leq 1$ then
use $\sin \theta=\left(e^{i \theta}-e^{-i \theta}\right) / 2 i$, rearaye:

$$
g(\xi)^{2}+2 i r \sin (h 5) g(3)-1=0
$$

$$
|g(\xi)|=1
$$

So
quad. formula:

$$
g(\xi)=-i r \sin (h 5) \pm \sqrt{1-r^{2} \sin ^{2}(h 3)}
$$

