1st-versus-2nd order equations, and singular perturbations

1. Solve by hand:

$$
\begin{gathered}
u(x)=c \\
\alpha=u(0)=c
\end{gathered}
$$

$$
\begin{aligned}
u^{\prime}(x)=0, \quad u(0) & =\alpha \\
U(X) & =\alpha
\end{aligned}
$$

2. Solve by hand:

$$
u^{\prime}(x)=0, \quad u(0)=\alpha, \quad u(1)=\beta
$$

no solution if $\alpha \neq \beta$

$$
\alpha=\beta: \quad u(x)=\alpha
$$

$$
\begin{aligned}
& \text { 3. Solve by hand: } \\
& \left.\qquad \begin{array}{l}
u(x)=c x+d \\
\alpha=U(0) \\
\alpha=d \\
\beta=U(1)
\end{array}\right) \rightarrow c+d
\end{aligned}
$$

4. Solve by hand:

$$
0.1 u^{\prime \prime}(x)+u^{\prime}(x)=0, \quad u(0)=\alpha, \quad u(1)=\beta
$$

$$
u(x)=e^{r x} \Rightarrow 0.1 r^{2}+r=0
$$

$$
\left.\begin{array}{l}
r=0, \quad r=-10 \\
(x)=c+d e^{-10 x} \\
x=u(0)=c+d
\end{array}\right\}
$$

$$
\beta=u(1)=c+d e^{-10}
$$

$$
\begin{aligned}
& \rightarrow d= \frac{\alpha-\beta}{1-e^{-10}}, c=\alpha-d \\
& u(x)=\left(\alpha-\frac{\alpha-\beta}{1-e^{-10}}\right) \\
&+\left(\frac{\alpha-\beta}{1-e^{-10}}\right) e^{-10 x}
\end{aligned}
$$

5. Sketch the graphs of all solutions from the previous page on the same axes, in the case where $\alpha=2$ and $\beta=-1$. (Make it big and label it clearly.) Also sketch what happens in problem 4 if " 0.1 " is replaced by a much smaller $\epsilon>0$; the ODE in question is $\epsilon u^{\prime \prime}(x)+u^{\prime}(x)=0$.

will look like if $\epsilon>0$ is very small.

