1st-versus-2nd order equations, and singular perturbations

1. Solve by hand:

$$
u^{\prime}(x)=0, \quad u(0)=\alpha
$$

2. Solve by hand:

$$
u^{\prime}(x)=0, \quad u(0)=\alpha, \quad u(1)=\beta
$$

3. Solve by hand:

$$
u^{\prime \prime}(x)=0, \quad u(0)=\alpha, \quad u(1)=\beta
$$

4. Solve by hand:

$$
0.1 u^{\prime \prime}(x)+u^{\prime}(x)=0, \quad u(0)=\alpha, \quad u(1)=\beta
$$

5. Sketch the graphs of all solutions from the previous page on the same axes, in the case where $\alpha=2$ and $\beta=-1$. (Make it big and label it clearly.) Also sketch what happens in problem 4 if " 0.1 " is replaced by a much smaller $\epsilon>0$; the ODE in question is $\epsilon u^{\prime \prime}(x)+u^{\prime}(x)=0$.
6. Sketch what you think the solution of

$$
\epsilon u^{\prime \prime}(x)-u^{\prime}(x)=0, \quad u(0)=\alpha, \quad u(1)=\beta
$$

will look like if $\epsilon>0$ is very small.

