
Math 615 NADE (Bueler) April 22, 2023

Show and tell with PETSc and Firedrake

Examples from my book. I wrote a book called PETSc for Partial Differential Equations
which was published by SIAM Press in 2021. The C and Python codes for the book’s ex-
amples are at github.com/bueler/p4pdes. In this demonstration I’ll show examples
from Chapters 5, 11, and 14.

What is PETSc? The Portable, Extensible Toolkit for Scientific computing is an open and
free C library of numerical software, especially linear algebra, mesh management, and
ODE IVP solvers, from Argonne National Laboratory. Starting in about 1990, PETSc co-
evolved with the Message Passing Interface (MPI), also from Argonne, as the fundamental
infrastructure for doing science and engineering simulations and computations on su-
percomputers, the largest of which have more than a million processors (cores). MPI and
PETSc are essential “software stack” for most large-scale parallel computations.

Documentation and download is at petsc.org.

Example 1. Chapter 5 solves a pair of coupled diffusion-reaction equations on (x, y) ∈
(0, 2.5)× (0, 2.5) and t > 0:

ut = Du∇2u− uv2 + ϕ(1− u)

vt = Dv∇2v + uv2 − (ϕ+ κ)v

where Du, Dv, ϕ, κ are constants and u(t, x, y), v(t, x, y) are chemical concentrations. This
is a model for pattern generation, for instance as an explanation of how animal skins can
end up spotted.

The C code pattern.c calls the PETSc library for time-stepping, parallel grid man-
agement, and parallel, iterative solvers for linear systems. The spatial derivatives are
approximated with a 9-point-stencil centered finite difference scheme for ∇2, which gen-
erates an MOL system. Default time-stepping (ts ) is by an adaptive method which is
implicit for the stiff diffusion part and explicit for the non-stiff, nonlinear reaction terms.
Other methods can be chosen at run-time, for instance by -ts type beuler, and so on.

Here is how to build it, and run it in parallel (4 cores) on a 96× 96 spatial grid:

$ cd c/ch5/ && make pattern
$ mpiexec -n 4 ./pattern -da_refine 5 -ts_max_time 5000 -ts_monitor \

-ts_monitor_solution draw

Example 2. C code advect.c in Chapter 11 takes a finite volume approach, to generate
the MOL ODE system, for solving a scalar advection equation in 2D, on (x, y) ∈ (−1, 1) ×
(−1, 1), with periodic boundary conditions, for t > 0:

ut +∇ · (au) = 0

The velocity field in this example is rotational: a(x, y) = ⟨y,−x⟩. The spatial derivatives
are approximated with finite differences and a flux-limited higher-order upwind scheme.
The time-stepping is by a 3rd-order adaptive Runge-Kutta method, quite suitable for such
hyperbolic problems if the fluxes are discretized appropriately.

Here is an example run (4 cores, 160× 160 spatial grid):

https://github.com/bueler/p4pdes
https://petsc.org/
https://www.mpich.org/
https://petsc.org/


2

$ cd c/ch11/ && make advect
$ mpiexec -n 4 ./advect -da_refine 5 -adv_problem rotation \

-ts_max_time 6.283185 -ts_monitor -ts_monitor_solution draw

A surface plot of the initial condition u(x, y, 0) would look like a cone and a square
tower. The time-dependent solution rotates the initial picture back to the same configu-
ration at tf = 2π, but numerical diffusion does cause the sharp edges to smooth out.

Example 3. The last example uses a Python code in Chapter 14. It solves a Stokes problem
for a steady flow of a 2D viscous, incompressible fluid with velocity u = ⟨u, v⟩, pressure
p, and constant viscosity µ > 0. The 3 coupled scalar equations are

−∇ · (2µDu) +∇p = 0,

∇ · u = 0.

The boundary value problem has zero velocity u = 0 on the bottom and sides of the unit
square, but along the top we impose right-ward motion; this is called a lid-driven cavity.

Firedrake (firedrakeproject.org) is a Python finite element library which allows
us to express a PDE problem directly, independent of a choice of particular (spatial) dis-
cretization. More precisely we express the weak form of the PDE in the Unified Form Lan-
guage. Then Firedrake will apply the finite element (FE) method and generate a linear or
nonlinear system of algebraic equations, which is then solved by PETSc solvers. For the
Stokes problem we write the following core description as part of stokes.py:

V = VectorFunctionSpace(mesh, ’CG’, degree=2)
W = FunctionSpace(mesh, ’CG’, degree=1)
Z = V * W
up = Function(Z)
u,p = split(up)
v,q = TestFunctions(Z)
Du = 0.5 * (grad(u) + grad(u).T)
Dv = 0.5 * (grad(v) + grad(v).T)
F = (2.0 * args.mu * inner(Du,Dv) - p * div(v) - div(u) * q) * dx

The discretized problem uses a completely arbitrary triangular mesh, generated here
by a custom Python script (to specify the domain) and then Gmsh. One generates and
views the mesh, solves the problem (Schur-complement multigrid over 4 cores), and vi-
sualizes the solution using Paraview as follows:

$ cd python/ch14/
$ ./lidbox.py mesh.geo
$ gmsh -2 mesh.geo
$ gmsh mesh.msh
$ mpiexec -n 4 ./stokes.py -mesh mesh.msh -refine 5 -s_ksp_type gmres \

-schurgmg lower -schurpre selfp -s_ksp_rtol 1.0e-12 \
-showinfo -o solution.pvd

$ paraview solution.pvd

The sparse linear system here has 3 million degrees of freedom, on a mesh of 8 × 105

triangular elements.

A similar Stokes model for glacier ice, a fluid with nonlinear viscosity, is at
github.com/bueler/stokes-ice-tutorial

https://www.firedrakeproject.org/
https://fenics.readthedocs.io/projects/ufl/en/latest/
https://fenics.readthedocs.io/projects/ufl/en/latest/
https://gmsh.info/
https://www.paraview.org/
https://github.com/bueler/stokes-ice-tutorial

