Classical iterative methods for linear and nonlinear systems

Ed Bueler

MATH 615 Numerical Analysis of Differential Equations

Spring 2023

example linear systems

- suppose we want to solve the linear system

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{1}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times m}$ and $\mathbf{b} \in \mathbb{R}^{m}$

- the goal is to find $\mathbf{x} \in \mathbb{R}^{m}$
- throughout these notes we use 2 linear system examples:

LS1

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]
$$

LS2

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 0 \\
2 & 1 & -2 & -3 \\
-1 & 1 & 1 & 0 \\
0 & 1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
7 \\
1 \\
1 \\
3
\end{array}\right]
$$

- it is trivial to find solutions of LS1, LS2 using the " $x=A \backslash b$ " black box in MATLAB (or similar)
- LS1 and LS2 stand-in for the large linear systems we get from applying finite difference (FD) schemes to ODE and PDE problems

residual

- the residual of a vector \mathbf{v} in linear system (1) is the vector

$$
\begin{equation*}
\mathbf{r}(\mathbf{v})=\mathbf{b}-A \mathbf{v} \tag{2}
\end{equation*}
$$

- making the residual zero is the same as solving the system:

$$
A \mathbf{x}=\mathbf{b} \Longleftrightarrow \mathbf{r}(\mathbf{x})=0
$$

- evaluating $\mathbf{r}(\mathbf{v})$ needs a matrix-vector product and a vector subtraction
- requires $O\left(m^{2}\right)$ operations at worst
- by comparison, applying Gauss elimination to solve linear system (1) is an $O\left(m^{3}\right)$ operation in general

sparse matrices

- definition. a matrix with enough zeros to allow exploitation of that fact is called sparse
- the figure shows spy plots of 3 matrices; nonzero entries are in black
- numerical schemes for differential equations generate matrices A for which the majority, often 99% or more, of the entries are zero
- a non-sparse matrix is called dense, e.g. when most entries are nonzero
- even if A is sparse, A^{-1} is generally dense
- evaluating the residual of a sparse matrix with at most z nonzero entries per row requires $O(m)$ operations
- specifically, at most $(2 z+1) m$ operations

Richardson iteration

- iterative methods for the linear system $\mathbf{A x}=\mathbf{b}$ attempt to solve it based only on computing the residual or applying A to a vector
- one wants the sequence of approximations, the iterates, to converge to the solution $\mathbf{x}=A^{-1} \mathbf{b}$
- Iterative methods always require an initial iterate \mathbf{x}_{0}
- for example, Richardson iteration adds a multiple ω of the last residual at each step:

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\omega\left(\mathbf{b}-\boldsymbol{A} \mathbf{x}_{k}\right) \tag{3}
\end{equation*}
$$

- for system LS1, using initial iterate $\mathbf{x}_{0}=0$ and $\omega=1 / 5$, Richardson gives:

$$
\mathbf{x}_{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \mathbf{x}_{1}=\left[\begin{array}{l}
0.4 \\
0.2 \\
0.8
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}
0.6 \\
0.16 \\
1.04
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{c}
0.728 \\
0.088 \\
1.096
\end{array}\right], \ldots, \mathbf{x}_{10}=\left[\begin{array}{c}
0.998 \\
-0.017 \\
1.01
\end{array}\right], \ldots
$$

these iterates seem to be converging to $\mathbf{x}=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{\top}$, the solution to LS1

- when does Richardson iteration work?

recall: eigenvalues and vectors

- a complex number $\lambda \in \mathbb{C}$ is an eigenvalue of a square matrix $B \in \mathbb{R}^{m \times m}$ if there is a nonzero vector $\mathbf{v} \in \mathbb{C}^{m}$ so that $B \mathbf{v}=\lambda \mathbf{v}$
- λ is a root of a polynomial
- even if B is a real matrix, λ may be complex
- if λ is complex and B is real then \mathbf{v} must be complex
- the set of all eigenvalues of B is the spectrum $\sigma(B)$ of B
- the spectral radius $\rho(B)$ is the largest absolute value of an eigenvalue:

$$
\rho(B)=\max _{\lambda \in \sigma(B)}|\lambda|
$$

- fact: $\rho(B) \leq\|B\|$ in any induced matrix norm

spectral properties and convergence of iterations

- properties of a matrix B which can be described in terms of eigenvalues are generically called spectral properties
- some examples:
- the spectral radius $\rho(B)$ itself
- the 2-norm $\|B\|_{2}=\sqrt{\rho\left(B^{\top} B\right)}$
- the 2-norm condition number $\kappa(B)=\|B\|_{2}\left\|B^{-1}\right\|_{2}$
- a general idea:
whether an iterative method for solving a linear system $A \mathbf{x}=\mathbf{b}$ converges, or not, depends on the spectral properties of A, or on the spectral properties of matrices built from A
- the right-hand side \mathbf{b} in the linear system $A \mathbf{x}=\mathbf{b}$, and the initial iterate \mathbf{x}_{0}, generally do not determine whether an iteration converges
- a good choice of \mathbf{x}_{0} can speed up convergence when it happens

convergence of the Richardson iteration

- the Richardson iteration (3) can be rewritten as

$$
\mathbf{x}_{k+1}=(I-\omega A) \mathbf{x}_{k}+\omega \mathbf{b}
$$

- confirm this!
- Richardson iteration converges if and only if all the eigenvalues of the matrix $I-\omega A$ are inside the unit circle:

Richardson converges if and only if $\rho(I-\omega A)<1$

- see the lemma on the next slide
- note $\rho(I-\omega A)<1$ means $(I-\omega A) \mathbf{x}_{k}$ is smaller in magnitude than \mathbf{x}_{k}
- fact: if $\|I-\omega A\|<1$ then Richardson converges

convergence lemma for linear iterations

Lemma

$$
\mathbf{y}_{k+1}=M \mathbf{y}_{k}+\mathbf{c}
$$

converges to the solution of $\mathbf{y}=M \mathbf{y}+\mathbf{c}$ for all initial \mathbf{y}_{0} if and only if

$$
\rho(M)<1 .
$$

Proof.

Iterate. That is, write out a few cases:

$$
\begin{aligned}
& \mathbf{y}_{2}=M\left(M \mathbf{y}_{0}+\mathbf{c}\right)+\mathbf{c}=M^{2} \mathbf{y}_{0}+(I+M) \mathbf{c} \\
& \mathbf{y}_{3}=M\left(M^{2} \mathbf{y}_{0}+(I+M) \mathbf{c}\right)+\mathbf{c}=M^{3} \mathbf{y}_{0}+\left(I+M+M^{2}\right) \mathbf{c}
\end{aligned}
$$

and so on. By induction we get $\mathbf{y}_{k}=M^{k} \mathbf{y}_{0}+p_{k}(M) \mathbf{c}$ where $p_{k}(x)=1+x+x^{2}+\ldots$ $+x^{k-1}$. But $p_{k}(x) \rightarrow 1 /(1-x)$ as $k \rightarrow \infty$ iff $x \in(-1,1)$; it is a convergent Maclaurin series on that open interval. Also, $\rho(M)<1$ iff $M^{k} \rightarrow 0$. Thus $\mathbf{y}_{k} \rightarrow(I-M)^{-1} \mathbf{c}$ iff $\rho(M)<1$.

convergence of the Richardson iteration 2

- since the Richardson iteration converges iff $\rho(I-\omega A)<1$, we should choose ω based on the principle that
ωA should be close to the identity $/$
- often not possible!
- in small cases we can graph $f(\omega)=\rho(I-\omega A)$:

```
omega = -1:.01:1;
rho = zeros(size(omega));
for j = 1:length(omega)
    M = eye(n) - omega(j) * A;
    rho(j) = max(abs(eig(M)));
end
plot(omega,rho)
```

for LS1: $\rho(I-\omega A)$ dips below 1 for $0<\omega \lesssim 0.6$ for LS2: $\rho(I-\omega A) \geq 1$ always

- note $\rho(I-O A)=1 \ldots$ so no convergence when $\omega \approx 0$
- for LS1, figure suggests $\omega \approx 0.4$ gives fastest convergence

matrix splitting

- several classical iteration methods "split" the matrix A before iterating
- Richardson iteration is an exception
- the best known, and simplest, iteration based on splitting is Jacobi iteration, which extracts and inverts the diagonal of A
- the splitting we consider is

$$
A=D-L-U
$$

where

- D is the diagonal of A
- L is strictly lower triangular ($\ell_{i j}=0$ if $i \leq j$)
- U is strictly upper triangular ($u_{i j}=0$ if $i \geq j$)
- you can split any matrix this way
- see section 4.2 of the textbook
- so that D is an invertible matrix, for the remaining slides we assume all diagonal entries of A are nonzero: $\quad a_{i i} \neq 0$

Jacobi iteration

- the Jacobi iteration is

$$
\begin{equation*}
D \mathbf{x}_{k+1}=\mathbf{b}+(L+U) \mathbf{x}_{k} \tag{4}
\end{equation*}
$$

- if it converges then $D \mathbf{x}=\mathbf{b}+(L+U) \mathbf{x}$, which is the same as $A \mathbf{x}=\mathbf{b}$
- we could also write it as $\mathbf{x}_{k+1}=D^{-1}\left(\mathbf{b}+(L+U) \mathbf{x}_{k}\right) \quad$ or as

$$
\begin{equation*}
x_{i}^{(k+1)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j \neq i} a_{i j} x_{j}^{(k)}\right) \tag{5}
\end{equation*}
$$

where $x_{j}^{(k)}$ denotes the j th entry of the k th iterate \mathbf{x}_{k}

- make sure you understand why (4) and (5) are the same!

Gauss-Seidel iteration

- Gauss-Seidel iteration instead extracts and inverts the non-strict lower-triangular part of A
- if $A=D-L-U$ then Gauss-Seidel is

$$
\begin{equation*}
(D-L) \mathbf{x}_{k+1}=b+U \mathbf{x}_{k} \tag{6}
\end{equation*}
$$

- we could also write it as " $\mathbf{x}_{k+1}=(D-L)^{-1}\left(b+U \mathbf{x}_{k}\right)$ ", but don't \ldots that would miss the point!
- instead we write it as $D \mathbf{x}_{k+1}=b+U \mathbf{x}_{k}+L \mathbf{x}_{k+1} \quad$ or equivalently:

$$
\begin{equation*}
x_{i}^{(k+1)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j>i} a_{i j} x_{j}^{(k)}-\sum_{j<i} a_{i j} x_{j}^{(k+1)}\right) \tag{7}
\end{equation*}
$$

- the lower-triangular entries of A apply to those entries of \mathbf{x}_{k+1} which have already been computed
- form (7) is actually easier to implement than Jacobi (5) (why?)

convergence conditions for Jacobi and Gauss-Seidel

- the convergence lemma says that
- Jacobi iteration converges if and only if $\rho\left(D^{-1}(L+U)\right)<1$
- Gauss-Seidel iteration converges if and only if $\rho\left((D-L)^{-1} U\right)<1$
- these conditions are hard to use in practice because computing a spectral radius can be just as hard as solving the original system

diagonally-dominant matrices

- definition. A is strictly diagonally-dominant (SDD) if $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$
- A in LS1 is SDD
- A in LS2 is not
- SDD is a common, but not universal, property of the matrices coming from FD schemes on ODEs and PDEs
- facts: ${ }^{1}$
- if A is strictly diagonally-dominant then both the Jacobi and Gauss-Seidel iterations converge; see problem P14
- if A is symmetric positive definite then Gauss-Seidel iteration converges
- these are only sufficient conditions, e.g. there are nonsymmetric A, which are not diagonally-dominant, for which the iterations converge
- unlike the " $\rho(\ldots)<1$ " conditions on the last slide, it is easy to check SDD
${ }^{1}$ section 11.2 of Golub and van Loan, Matrix Computations, 4th edition 2013

interlude: past and future

- the Jacobi and Gauss-Seidel iterations are from the 19th century
- Richardson iteration first appears in a 1910 publication
- the early history of numerical partial differential equations, e.g. in the 1920 to 1970 period, heavily used these classical iterations
- a generalization of Gauss-Seidel iteration called successive over-relaxation, was a particular favorite around 1970; see section 4.2 of the textbook
- none of these iterations work on system LS2
- there are better iterative ideas; they flourished starting in the 1980-90s
- among the best known are CG = conjugate gradients (~ 1950) and GMRES = generalized minimum residuals (Saad and Schultz, 1986)
- GMRES works (i.e. converges at some rate) on LS2
- but there is no "good iteration" with a universally-fast convergence rate for all matrices ${ }^{2}$
- iterative methods for solving linear systems will dominate the future:
- they are obligatory on sufficiently-big systems
- they work better in parallel than direct methods like Gauss elimination
- they can exploit partial knowledge of the underlying model/question
${ }^{2}$ a remarkable 1992 theorem by Nachtigal, Reddy, and Trefethen

interlude: biographies

- of course, Gauss (1777-1855) did lots of big stuff:
en.wikipedia.org/wiki/Carl_Friedrich_Gauss
- Jacobi (1804-1851) also has his name on the "Jacobian", the matrix of derivatives appearing in Newton's method for systems of equations:

```
en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
```

- Seidel (1821-1896) is relatively little known:
en.wikipedia.org/wiki/Philipp_Ludwig_von_Seidel
- Richardson (1881-1953) is the most interesting. He invented numerical weather forecasting, doing it by-hand for fun during WWI. Later, as a pacifist and quaker, he quit the subject when he found his meteorological work was being used by chemical weapons engineers and the military:
en.wikipedia.org/wiki/Lewis_Fry_Richardson

nonlinear systems

- generally, systems of equations are not linear, so they cannot be written in the form $A \mathbf{x}=\mathbf{b}$
- instead, we can write any square system of equations using a function $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$:

$$
f(\mathbf{x})=\mathbf{0}
$$

- "square" simply means the number of unknowns (inputs to \mathbf{f}) equals the number of equations (outputs from \mathbf{f})
- if \mathbf{f} is smooth then its first derivative is a matrix-valued function called the Jacobian of \mathbf{f} :

$$
J_{i j}=\frac{\partial f_{i}}{\partial x_{j}}
$$

- for each $\mathbf{x}, J(\mathbf{x})$ is an $n \times n$ matrix
- example: a function and its Jacobian:

$$
\mathbf{f}(\mathbf{x})=\left[\begin{array}{c}
\frac{1}{2} e^{2 x_{1}}-x_{2} \\
x_{1}^{2}+x_{2}^{2}-1
\end{array}\right], \quad J(\mathbf{x})=\left[\begin{array}{cc}
e^{2 x_{1}} & -1 \\
2 x_{1} & 2 x_{2}
\end{array}\right]
$$

example of a nonlinear system

- here is an example of a nonlinear system with $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
- find where the circle of radius 1 intersects the graph of an exponential:

$$
\begin{gathered}
x^{2}+y^{2}=1 \\
y=\frac{1}{2} e^{2 x}
\end{gathered}
$$

- note there are two intersection points
- I don't know how to find them by hand
- renaming $x=x_{1}, y=x_{2}$ allows us to write this as $\mathbf{f}(\mathbf{x})=\mathbf{0}$:

$$
f(\mathbf{x})=\left[\begin{array}{c}
\frac{1}{2} e^{2 x_{1}}-x_{2} \\
x_{1}^{2}+x_{2}^{2}-1
\end{array}\right]
$$

- the same example as on the last slide

Newton's method

- our classical linear iterations generated sequences \mathbf{x}_{k} which solved $\mathbf{r}(\mathbf{x})=\mathbf{b}-A \mathbf{x}=0$, that is, so that $\mathbf{r}\left(\mathbf{x}_{k}\right) \rightarrow \mathbf{0}$
- similarly, Newton's method for a system of nonlinear equations generates a sequence \mathbf{x}_{k} so that $\mathbf{f}\left(\mathbf{x}_{k}\right) \rightarrow \mathbf{0}$
- as usual, an initial iterate \mathbf{x}_{0} is needed
- it repeatedly linearizes $\mathbf{f}(\mathbf{x})=0$; one needs to solve a linear system to get each new iterate \mathbf{x}_{k}
- it is often surprisingly fast!
- Newton's method:

$$
\begin{gather*}
J\left(\mathbf{x}_{k}\right) \mathbf{s}=-\mathbf{f}\left(\mathbf{x}_{k}\right), \tag{8}\\
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\mathbf{s} \tag{9}
\end{gather*}
$$

- eqn (8) is a system of linear equations which determines the step \mathbf{s}
- eqn (9) takes the step to the next iterate

explanation of Newton's method

- suppose \mathbf{x}_{k} is a current estimate of the solution $\mathbf{f}(\mathbf{x})=\mathbf{0}$
- now linearize \mathbf{f} around \mathbf{x}_{k} using Taylor's theorem with remainder:

$$
\mathbf{f}(\mathbf{x})=\mathbf{f}\left(\mathbf{x}_{k}\right)+J\left(\mathbf{x}_{k}\right)\left(\mathbf{x}-\mathbf{x}_{k}\right)+O\left(h^{2}\right)
$$

where $h=\left\|\mathbf{x}-\mathbf{x}_{k}\right\|$ is the distance between the basepoint \mathbf{x}_{k} and another value \mathbf{x}

- the linearization of \mathbf{f} comes from dropping the $O\left(h^{2}\right)$ term:

$$
\ell(\mathbf{x})=\mathbf{f}\left(\mathbf{x}_{k}\right)+J\left(\mathbf{x}_{k}\right)\left(\mathbf{x}-\mathbf{x}_{k}\right)
$$

- now define the next iterate \mathbf{x}_{k+1} as the zero of the linearization ℓ :

$$
\mathbf{0}=\mathbf{f}\left(\mathbf{x}_{k}\right)+J\left(\mathbf{x}_{k}\right)\left(\mathbf{x}_{k+1}-\mathbf{x}_{k}\right)
$$

- denote the difference $\mathbf{x}_{k+1}-\mathbf{x}_{k}$ by \mathbf{s}, and thus get the previous form:

$$
\begin{gathered}
J\left(\mathbf{x}_{k}\right) \mathbf{s}=-\mathbf{f}\left(\mathbf{x}_{k}\right), \\
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\mathbf{s}
\end{gathered}
$$

example

- recall the example, where a circle intersects an exponential: $x^{2}+y^{2}=1, y=\frac{1}{2} e^{2 x}$
- this nonlinear residual function and Jacobian:

$$
\mathbf{f}(\mathbf{x})=\left[\begin{array}{c}
\frac{1}{2} e^{2 x_{1}}-x_{2} \\
x_{1}^{2}+x_{2}^{2}-1
\end{array}\right], J(\mathbf{x})=\left[\begin{array}{cc}
e^{2 x_{1}} & -1 \\
2 x_{1} & 2 x_{2}
\end{array}\right]
$$

- for example, run Newton's method starting from $\mathbf{x}_{0}=(1,1)$:

$$
\begin{gathered}
\mathbf{x}_{0}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{x}_{1}=\left[\begin{array}{l}
0.619203 \\
0.880797
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}
0.394157 \\
0.948623
\end{array}\right], \\
\mathbf{x}_{3}=\left[\begin{array}{l}
0.325199 \\
0.948157
\end{array}\right], \mathbf{x}_{4}=\left[\begin{array}{l}
0.319665 \\
0.947547
\end{array}\right] \cdots
\end{gathered}
$$

- \mathbf{x}_{3} is already at the intersection visually; note $\left\|\mathbf{f}\left(x_{4}\right)\right\|_{2}=7 e-5$ and $\left\|\mathbf{f}\left(x_{5}\right)\right\|_{2}=2 e-9$; we have solved accurately

