Classical iterative methods for linear and nonlinear systems

Ed Bueler

MATH 615 Numerical Analysis of Differential Equations

Spring 2023

example linear systems

suppose we want to solve the linear system

$$A\mathbf{x} = \mathbf{b}$$
 (1)

where $A \in \mathbb{R}^{m \times m}$ and $\mathbf{b} \in \mathbb{R}^m$

- the goal is to find $\mathbf{x} \in \mathbb{R}^m$
- throughout these notes we use 2 linear system examples:

LS1

$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$$

LS₂

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 1 & -2 & -3 \\ -1 & 1 & 1 & 0 \\ 0 & 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 7 \\ 1 \\ 1 \\ 3 \end{bmatrix}$$

- it is trivial to find solutions of LS1, LS2 using the " $x=A\b$ " black box in MATLAB (or similar)
- LS1 and LS2 stand-in for the large linear systems we get from applying finite difference (FD) schemes to ODE and PDE problems

residual

the residual of a vector v in linear system (1) is the vector

$$\mathbf{r}(\mathbf{v}) = \mathbf{b} - A\mathbf{v} \tag{2}$$

making the residual zero is the same as solving the system:

$$A\mathbf{x} = \mathbf{b} \iff \mathbf{r}(\mathbf{x}) = \mathbf{0}$$

- ullet evaluating ${f r}({f v})$ needs a matrix-vector product and a vector subtraction
 - requires O(m²) operations at worst
 - by comparison, applying Gauss elimination to solve linear system (1) is an $O(m^3)$ operation in general

sparse matrices

- definition. a matrix with enough zeros to allow exploitation of that fact is called sparse
 - the figure shows spy plots of 3 matrices; nonzero entries are in black
 - numerical schemes for differential equations generate matrices A for which the majority, often 99% or more, of the entries are zero
- a non-sparse matrix is called *dense*, e.g. when most entries are nonzero
 even if A is sparse, A⁻¹ is generally dense
- evaluating the residual of a sparse matrix with at most z nonzero entries per row requires O(m) operations
 - o specifically, at most (2z + 1)m operations

Richardson iteration

- *iterative methods* for the linear system $A\mathbf{x} = \mathbf{b}$ attempt to solve it based only on computing the residual or applying A to a vector
 - o one wants the sequence of approximations, the iterates, to *converge* to the solution $\mathbf{x} = A^{-1}\mathbf{b}$
 - Iterative methods always require an initial iterate x₀
- for example, *Richardson iteration* adds a multiple ω of the last residual at each step:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \omega(\mathbf{b} - A\mathbf{x}_k) \tag{3}$$

• for system LS1, using initial iterate $\mathbf{x}_0 = \mathbf{0}$ and $\omega = 1/5$, Richardson gives:

$$\mathbf{x}_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \ \mathbf{x}_1 = \begin{bmatrix} 0.4 \\ 0.2 \\ 0.8 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 0.6 \\ 0.16 \\ 1.04 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} 0.728 \\ 0.088 \\ 1.096 \end{bmatrix}, \dots, \ \mathbf{x}_{10} = \begin{bmatrix} 0.998 \\ -0.017 \\ 1.01 \end{bmatrix}, \dots$$

these iterates seem to be converging to $\mathbf{x} = [1 \ 0 \ 1]^{\mathsf{T}}$, the solution to LS1

when does Richardson iteration work?

∢ロ → ∢団 → ∢ 重 → ∢ 重 → り へ ○

Ed Bueler (MATH 615 NADE) Classical iterative methods

recall: eigenvalues and vectors

- a complex number $\lambda \in \mathbb{C}$ is an *eigenvalue* of a square matrix $B \in \mathbb{R}^{m \times m}$ if there is a nonzero vector $\mathbf{v} \in \mathbb{C}^m$ so that $B\mathbf{v} = \lambda \mathbf{v}$
 - λ is a root of a polynomial
 - even if B is a real matrix, λ may be complex
 - o if λ is complex and B is real then \mathbf{v} must be complex
- the set of all eigenvalues of B is the spectrum $\sigma(B)$ of B
- the spectral radius $\rho(B)$ is the largest absolute value of an eigenvalue:

$$\rho(B) = \max_{\lambda \in \sigma(B)} |\lambda|$$

o fact: $\rho(B) \le ||B||$ in any induced matrix norm

spectral properties and convergence of iterations

- properties of a matrix B which can be described in terms of eigenvalues are generically called spectral properties
- some examples:
 - the spectral radius $\rho(B)$ itself
 - the 2-norm $||B||_2 = \sqrt{\rho(B^\top B)}$
 - the 2-norm condition number $\kappa(B) = ||B||_2 ||B^{-1}||_2$
- a general idea:

whether an iterative method for solving a linear system $A\mathbf{x} = \mathbf{b}$ converges, or not, depends on the spectral properties of A, or on the spectral properties of matrices built from A

- the right-hand side **b** in the linear system $A\mathbf{x} = \mathbf{b}$, and the initial iterate \mathbf{x}_0 , generally *do not* determine whether an iteration converges
 - o a good choice of \mathbf{x}_0 can speed up convergence when it happens

convergence of the Richardson iteration

the Richardson iteration (3) can be rewritten as

$$\mathbf{x}_{k+1} = (I - \omega A)\mathbf{x}_k + \omega \mathbf{b}$$

- confirm this!
- Richardson iteration converges if and only if all the eigenvalues of the matrix $I \omega A$ are inside the unit circle:

Richardson converges if and only if $\rho(I - \omega A) < 1$

- o see the lemma on the next slide
- o note $\rho(I \omega A) < 1$ means $(I \omega A)\mathbf{x}_k$ is smaller in magnitude than \mathbf{x}_k
- \circ fact: if $||I \omega A|| < 1$ then Richardson converges

Ed Bueler (MATH 615 NADE)

convergence lemma for linear iterations

Lemma

$$\mathbf{y}_{k+1} = M\mathbf{y}_k + \mathbf{c}$$

converges to the solution of $\mathbf{y} = M\mathbf{y} + \mathbf{c}$ for all initial \mathbf{y}_0 if and only if

$$\rho(M) < 1$$
.

Proof.

Iterate. That is, write out a few cases:

$$\mathbf{y}_2 = M(M\mathbf{y}_0 + \mathbf{c}) + \mathbf{c} = M^2\mathbf{y}_0 + (I + M)\mathbf{c},$$

 $\mathbf{y}_3 = M(M^2\mathbf{y}_0 + (I + M)\mathbf{c}) + \mathbf{c} = M^3\mathbf{y}_0 + (I + M + M^2)\mathbf{c},$

and so on. By induction we get $\mathbf{y}_k = M^k \mathbf{y}_0 + p_k(M)\mathbf{c}$ where $p_k(x) = 1 + x + x^2 + \dots + x^{k-1}$. But $p_k(x) \to 1/(1-x)$ as $k \to \infty$ iff $x \in (-1,1)$; it is a convergent Maclaurin series on that open interval. Also, $\rho(M) < 1$ iff $M^k \to 0$. Thus $\mathbf{y}_k \to (I-M)^{-1}\mathbf{c}$ iff $\rho(M) < 1$.

Spring 2023

convergence of the Richardson iteration 2

• since the Richardson iteration converges iff $\rho(I - \omega A) < 1$, we should choose ω based on the principle that

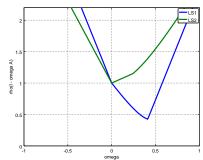
 ωA should be close to the identity I

- often not possible!
- in small cases we can graph $f(\omega) = \rho(I \omega A)$:

```
omega = -1:.01:1;
rho = zeros(size(omega));
for j = 1:length(omega)
    M = eye(n) - omega(j) * A;
    rho(j) = max(abs(eig(M)));
end
plot(omega,rho)
```

```
for LS1: \rho(I-\omega A) dips below 1 for 0<\omega\lesssim 0.6 for LS2: \rho(I-\omega A)\geq 1 always
```

Ed Bueler (MATH 615 NADE)



Spring 2023

10/22

- note $\rho(I 0A) = 1$... so no convergence when $\omega \approx 0$
- for LS1, figure suggests $\omega \approx$ 0.4 gives fastest convergence

Classical iterative methods

matrix splitting

- several classical iteration methods "split" the matrix A before iterating
 - Richardson iteration is an exception
- the best known, and simplest, iteration based on splitting is Jacobi iteration, which extracts and inverts the diagonal of A
- the splitting we consider is

$$A = D - L - U$$

where

- D is the diagonal of A
- L is strictly lower triangular $(\ell_{ii} = 0 \text{ if } i < j)$
- *U* is strictly upper triangular $(u_{ii} = 0 \text{ if } i > j)$
- you can split any matrix this way
- see section 4.2 of the textbook
- so that D is an invertible matrix, for the remaining slides we assume all diagonal entries of A are nonzero: $a_{ii} \neq 0$

Ed Bueler (MATH 615 NADE) Classical iterative methods

Spring 2023

Jacobi iteration

the Jacobi iteration is

$$D\mathbf{x}_{k+1} = \mathbf{b} + (L+U)\mathbf{x}_k \tag{4}$$

- if it converges then $D\mathbf{x} = \mathbf{b} + (L + U)\mathbf{x}$, which is the same as $A\mathbf{x} = \mathbf{b}$
- we could also write it as $\mathbf{x}_{k+1} = D^{-1} (\mathbf{b} + (L+U)\mathbf{x}_k)$ or as

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(k)} \right)$$
 (5)

where $x_i^{(k)}$ denotes the *j*th entry of the *k*th iterate \mathbf{x}_k

• make sure you understand why (4) and (5) are the same!

Ed Bueler (MATH 615 NADE)

Gauss-Seidel iteration

- Gauss-Seidel iteration instead extracts and inverts the non-strict lower-triangular part of A
- if A = D L U then Gauss-Seidel is

$$(D-L)\mathbf{x}_{k+1} = b + U\mathbf{x}_k \tag{6}$$

- we could also write it as " $\mathbf{x}_{k+1} = (D-L)^{-1} (b+U\mathbf{x}_k)$ ", but don't . . . that would miss the point!
- instead we write it as $D\mathbf{x}_{k+1} = b + U\mathbf{x}_k + L\mathbf{x}_{k+1}$ or equivalently:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j>i} a_{ij} x_j^{(k)} - \sum_{j(7)$$

- the lower-triangular entries of A apply to those entries of \mathbf{x}_{k+1} which have already been computed
- form (7) is actually easier to implement than Jacobi (5) (why?)

Ed Bueler (MATH 615 NADE) Classical iterative methods Spring 2023

convergence conditions for Jacobi and Gauss-Seidel

- the convergence lemma says that
 - Jacobi iteration converges if and only if $\rho(D^{-1}(L+U)) < 1$
 - o Gauss-Seidel iteration converges if and only if $\rho((D-L)^{-1}U) < 1$
- these conditions are hard to use in practice because computing a spectral radius can be just as hard as solving the original system

diagonally-dominant matrices

- definition. A is strictly diagonally-dominant (SDD) if $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$
 - A in LS1 is SDD
 - o A in LS2 is not
 - SDD is a common, but not universal, property of the matrices coming from FD schemes on ODEs and PDEs
- facts:¹
 - if A is strictly diagonally-dominant then both the Jacobi and Gauss-Seidel iterations converge; see problem P14
 - $\circ~$ if A is symmetric positive definite then Gauss-Seidel iteration converges
 - these are only sufficient conditions, e.g. there are nonsymmetric A, which are not diagonally-dominant, for which the iterations converge
- ullet unlike the " $ho(\dots)<1$ " conditions on the last slide, it is easy to check SDD

1section 11.2 of Golub and van Loan, Matrix Computations, 4th edition 2013 → ⟨ ₹ → ⟩ ₹ → ○ ⟨ ○

15/22

Ed Bueler (MATH 615 NADE) Classical iterative methods Spring 2023

interlude: past and future

- the Jacobi and Gauss-Seidel iterations are from the 19th century
- Richardson iteration first appears in a 1910 publication
- the early history of numerical partial differential equations, e.g. in the 1920 to 1970 period, heavily used these classical iterations
 - a generalization of Gauss-Seidel iteration called successive over-relaxation, was a particular favorite around 1970; see section 4.2 of the textbook
- none of these iterations work on system LS2
- there are better iterative ideas; they flourished starting in the 1980-90s
 - among the best known are CG = conjugate gradients (~1950) and GMRES
 = generalized minimum residuals (Saad and Schultz, 1986)
 - GMRES works (i.e. converges at some rate) on LS2
 - but there is no "good iteration" with a universally-fast convergence rate for all matrices²
- iterative methods for solving linear systems will dominate the future:
 - they are obligatory on sufficiently-big systems
 - they work better in parallel than direct methods like Gauss elimination
 - they can exploit partial knowledge of the underlying model/question

²a remarkable 1992 theorem by Nachtigal, Reddy, and Trefethen 🕟 🖅 🔻 👢 🔻 📜 🔻 🗨 🗨 🗨

Ed Bueler (MATH 615 NADE) Classical iterative methods Spring 2023 16/22

interlude: biographies

- of course, Gauss (1777–1855) did lots of big stuff:
 - en.wikipedia.org/wiki/Carl_Friedrich_Gauss
- Jacobi (1804–1851) also has his name on the "Jacobian", the matrix of derivatives appearing in Newton's method for systems of equations:
 - en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
- Seidel (1821-1896) is relatively little known:
 - en.wikipedia.org/wiki/Philipp_Ludwig_von_Seidel
- Richardson (1881–1953) is the most interesting. He invented numerical weather forecasting, doing it by-hand for fun during WWI. Later, as a pacifist and quaker, he quit the subject when he found his meteorological work was being used by chemical weapons engineers and the military:
 - en.wikipedia.org/wiki/Lewis_Fry_Richardson

nonlinear systems

- generally, systems of equations are not linear, so they cannot be written in the form Ax = b
- instead, we can write any square system of equations using a function $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$:

$$f(x) = 0$$

- o "square" simply means the number of unknowns (inputs to f) equals the number of equations (outputs from f)
- if f is smooth then its first derivative is a matrix-valued function called the Jacobian of f:

$$J_{ij} = \frac{\partial f_i}{\partial x_i}$$

- o for each \mathbf{x} , $J(\mathbf{x})$ is an $n \times n$ matrix
- example: a function and its Jacobian:

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} \frac{1}{2}e^{2x_1} - x_2 \\ x_1^2 + x_2^2 - 1 \end{bmatrix}, \qquad J(\mathbf{x}) = \begin{bmatrix} e^{2x_1} & -1 \\ 2x_1 & 2x_2 \end{bmatrix}$$

Ed Bueler (MATH 615 NADE) Classical iterative methods Spring 2023

example of a nonlinear system

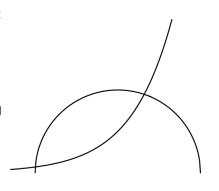
- here is an example of a nonlinear system with $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$
- find where the circle of radius 1 intersects the graph of an exponential:

$$x^2 + y^2 = 1$$
$$y = \frac{1}{2}e^{2x}$$

- o note there are two intersection points
- I don't know how to find them by hand
- renaming $x = x_1, y = x_2$ allows us to write this as $\mathbf{f}(\mathbf{x}) = \mathbf{0}$:

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} \frac{1}{2}e^{2x_1} - x_2 \\ x_1^2 + x_2^2 - 1 \end{bmatrix}$$

the same example as on the last slide



Newton's method

- our classical linear iterations generated sequences \mathbf{x}_k which solved $\mathbf{r}(\mathbf{x}) = \mathbf{b} A\mathbf{x} = 0$, that is, so that $\mathbf{r}(\mathbf{x}_k) \to \mathbf{0}$
- similarly, *Newton's method* for a system of nonlinear equations generates a sequence \mathbf{x}_k so that $\mathbf{f}(\mathbf{x}_k) \to \mathbf{0}$
 - o as usual, an initial iterate xo is needed
- it repeatedly linearizes $\mathbf{f}(\mathbf{x}) = 0$; one needs to solve a linear system to get each new iterate \mathbf{x}_k
- it is often surprisingly fast!
- Newton's method:

$$J(\mathbf{x}_k)\,\mathbf{s} = -\mathbf{f}(\mathbf{x}_k),\tag{8}$$

$$\mathbf{X}_{k+1} = \mathbf{X}_k + \mathbf{S} \tag{9}$$

- eqn (8) is a system of linear equations which determines the step s
- eqn (9) takes the step to the next iterate

explanation of Newton's method

- suppose \mathbf{x}_k is a current estimate of the solution $\mathbf{f}(\mathbf{x}) = \mathbf{0}$
- now linearize \mathbf{f} around \mathbf{x}_k using Taylor's theorem with remainder:

$$\mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x}_k) + J(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k) + O(h^2)$$

where $h = \|\mathbf{x} - \mathbf{x}_k\|$ is the distance between the basepoint \mathbf{x}_k and another value \mathbf{x}

• the linearization of **f** comes from dropping the $O(h^2)$ term:

$$\ell(\mathbf{x}) = \mathbf{f}(\mathbf{x}_k) + J(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k)$$

• now define the next iterate \mathbf{x}_{k+1} as the zero of the linearization ℓ :

$$\mathbf{0} = \mathbf{f}(\mathbf{x}_k) + J(\mathbf{x}_k)(\mathbf{x}_{k+1} - \mathbf{x}_k)$$

• denote the difference $\mathbf{x}_{k+1} - \mathbf{x}_k$ by \mathbf{s} , and thus get the previous form:

$$J(\mathbf{x}_k)\mathbf{s} = -\mathbf{f}(\mathbf{x}_k),$$

 $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}$

example

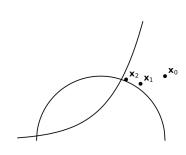
- recall the example, where a circle intersects an exponential: $x^2 + y^2 = 1$, $y = \frac{1}{2}e^{2x}$
- this nonlinear residual function and Jacobian:

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} \frac{1}{2}e^{2x_1} - x_2 \\ x_1^2 + x_2^2 - 1 \end{bmatrix}, \ J(\mathbf{x}) = \begin{bmatrix} e^{2x_1} & -1 \\ 2x_1 & 2x_2 \end{bmatrix}$$

• for example, run Newton's method starting from $\mathbf{x}_0 = (1,1)$:

$$\begin{split} \boldsymbol{x}_0 &= \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ \boldsymbol{x}_1 = \begin{bmatrix} 0.619203 \\ 0.880797 \end{bmatrix}, \ \boldsymbol{x}_2 = \begin{bmatrix} 0.394157 \\ 0.948623 \end{bmatrix}, \\ \boldsymbol{x}_3 &= \begin{bmatrix} 0.325199 \\ 0.948157 \end{bmatrix}, \ \boldsymbol{x}_4 = \begin{bmatrix} 0.319665 \\ 0.947547 \end{bmatrix}... \end{split}$$

 x₃ is already at the intersection visually; note ||f(x₄)||₂ = 7e-5 and ||f(x₅)||₂ = 2e-9; we have solved accurately



Ed Bueler (MATH 615 NADE)