
Math 615 NADE (Bueler) 18 April, 2025

Assignment #9

Due Friday, 25 April 2025, at the start of class

Please read Chapters 9 and 10 of the textbook (R. J. LeVeque, Finite Difference
Methods for Ordinary and Partial Diff. Eqns., SIAM Press 2007). We will not get to
Chapter 11 in regular lecture or homework, but it could be beneficial to browse it
for insight into your project.

Problem P36. Consider the advection equation ut + aux = 0 for u(t, x). Suppose
a > 0, and consider (10.21), the forward time, first-order upwinding scheme:1
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(a) Derive the scheme by applying first-order finite differences to the advection
equation. Draw and label the stencil.

(b) Implement this method for x ∈ [0, 1] and a = 1. Assume as a boundary
condition that u(t, 0) = 0; no other boundary condition will be needed. For the
initial condition, let

u(x, 0) =

{
1, 0.1 < x < 0.3

0, otherwise
The scheme is only conditionally stable, subject to the CFL condition |a|k/h ≤ 1.
Therefore, given user input of m or h, choose the time step from this condition.
(The solution to this part is the code itself.)

(c) The exact solution of the problem in (b) is easily found by thinking about
how advection works. Sketch the exact solution at t = 0.5 and t = 1. Then show,
for h = 0.1, the numerical solution from your code in (b) at the same times. Now
add the result from h = 0.01. In a couple of sentences, describe the character of the
convergence you are (or should be) seeing.

(d) Describe briefly, showing an easy code modification if you wish, how you
would modify the code from (b) to handle the more general advection equation
ut+a(t, x)ux = 0, where the continuous function a(t, x) is real-valued but can have
any sign and magnitude.

Problem P37. Consider (10.13) for solving the advection equation ut + aux = 0,
for u(t, x), where a ∈ R is a constant of either sign:
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1Commonly just “first-order upwinding”.
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This applies centered differences to all derivatives; it is the leapfrog method.2

(a) Compute the local truncation error τ(t, x) of this method, and find its order
of accuracy; that is, determine p, q in τ(t, x) = O(kp + hq).

(b) Apply a von Neumann analysis. (Hint. See the worksheet for Wednesday 4/23.)

(c) State the MOL ODE system U(t)′ = AU(t) from which the above method
comes, assuming periodic boundary conditions on the interval x ∈ [0, 1], giving
details for A. What are the eigenvalues of A? Derive the method by applying the
midpoint ODE method to it. From the stability region of the midpoint method,
explain what is understood about the stability of this PDE method. (Hint. Examine
Chapter 10. You may extract most of this answer from the book.)

(d) Implement this leapfrog method on the following problem: x ∈ [0, 1], a =
−0.5, u(0, x) = sin(8πx). Assume periodic boundary conditions. To make the im-
plementation work you will have to compute the first step by some other scheme;
describe and justify what you do. (The solution to this part is the code itself.)

(e) Suppose the final time is tf = 10. Then the exact solution in part (d) is
u(tf , x) = sin(8πx); please explain why. Then use h = 0.1, 0.05, 0.02, 0.01, 0.005, 0.002
and k = h and show a log-log convergence plot using the infinity norm for the
error. What O(hp) do you expect for the rate of convergence, and what do you
measure, and what is the right data to measure?

2Note that Lax-Wendroff is generally recommended as a better scheme for advection than
leapfrog, supposing one wants a simple and linear scheme formula. However if you are will-
ing to use serious and modern methods then the story changes. What you actually do is go back to
first-order upwinding and modify it with a higher-order, nonlinear flux-limiting or slope-limiting
scheme, often from a finite-volume frame of mind.


