
Math 615 NADE (Bueler) 2 April, 2025

Assignment #7

Due Friday, 11 April 2025, at the start of class

Please read Chapters 6, 7, and 8 of the textbook (R. J. LeVeque, Finite Difference
Methods for Ordinary and Partial Diff. Eqns., SIAM Press 2007). Within this material
we are de-emphasizing multistep methods, so sections 5.9, 6.4, 7.3, 7.6.1, and 7.7 are
all optional. However, full understanding of the other sections is expected; please
actually set aside a bit of time and read!

Problem P28. Please reproduce Table 7.1. That is, consider the scalar ODE IVP

u′(t) = λ (u(t)− cos(t))− sin(t), u(0) = 1

Use λ = −2100. Apply forward Euler1 to compute approximations of u(T ) for T = 2,
for the given values of k, and report the final-time numerical errors |UN − u(T )| as in
the Table. Confirm by this experiment that there is a critical value of k around 0.00095
where the error finally drops from enormous values to something comparable to, and
then much smaller than, the solution magnitude itself.

The book’s explains why: |1+kλ| ≤ 1 only if k|λ| < 2 or equivalently k < 2/|λ| = 2/2100 =
0.00095238. There is no need to include this analysis in your answer; please just confirm it
experimentally.

Problem P29. Consider θ-methods for u′ = f(t, u):

Un+1 = Un + k
[
(1− θ)f(tn, U

n) + θf(tn+1, U
n+1)

]
Here 0 ≤ θ ≤ 1 is a fixed parameter.

(a) Cases θ = 0, 1/2, 1 are all familiar methods. Name them. Then find the exact
absolute stability regions for θ = 0, 1/4, 1/2, 3/4, 1. (Hint. Apply method to the test
equation, and simplify. Write the complex number z = kλ as z = x+ iy. Find discs!)

(b) Show they are A-stable for any θ ≥ 1/2.

Problem P30. (a) For the classical RK4 method, which is Example 5.13 in the
textbook, show that the stability function is R(z) = 1 + z + 1

2
z2 + 1

3!
z3 + 1

4!
z4. (Hint.

Apply to the test equation. I skipped details for this during lecture; please fill them in.)

(b) Use a filled-contour plotter, like Matlab’s contourf as shown in class, to plot
the region of absolute stability of RK4. (Hint. I did this in lecture for an RK2 method.)

1Re-using an old code is just fine, but of course please pay attention to the details!
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Problem P31. Consider this Runge-Kutta method, an implicit and one-step inter-
pretation of the midpoint method:

U∗ = Un +
k

2
f
(
tn + k/2, U∗),

Un+1 = Un + kf
(
tn + k/2, U∗).

The first stage uses backward Euler to (implicitly) compute a value at the midpoint.
The second stage is a midpoint method using this value.2 Please determine the region
of absolute stability for this (combined) method; please do this exactly! Is this method
A-stable? Is it L-stable?

Problem P32. For a famously stiff problem, consider the heat PDE

(1) ut = uxx

Here u(t, x) might be the temperature in a rod of length one (0 ≤ x ≤ 1). Let us
set boundary temperatures to zero (u(t, 0) = u(t, 1) = 0), and assume some initial
temperature distribution u(0, x) = η(x).

Suppose we apply the method of lines (MOL) to (1). That is, we discretize the spatial
derivatives using the notation from Chapter 2. Specifically, let us use m + 1 subin-
tervals, h = 1/(m + 1), and xj = jh for j = 0, 1, 2, . . . ,m + 1. Now Uj(t) ≈ u(t, xj).
By eliminating unknowns U0 = 0 and Um+1 = 0, and keeping the time derivatives as
ordinary derivatives, from (1) we get a linear ODE system of dimension m,

(2) U(t)′ = AmU(t)

where U(t) ∈ Rm and A = Am is exactly the matrix in the textbook’s equation (2.10).
Note that U(0)j = η(xj) from the initial condition.

The eigenvalues of Am are given by equation (2.23) in the textbook:

λp =
2

h2
(cos(pπh)− 1) ,

for p = 1, . . . ,m.

(a) Please explain why all eigenvalues λp are points on the negative real axis. Then
justify the following approximation of the largest-magnitude (and most negative)
eigenvalue:

λm ≈ −4(m+ 1)2.

(Hint. Use a Taylor expansion of cos(θ) around the right location.)

(b) Suppose forward Euler is applied to solve (2) with equal time steps k > 0. How
small must k be chosen so that all of the values zp = λpk, for p = 1, . . . ,m, are inside
the region of absolute stability of forward Euler? Your answer will depend on m, but
not p. You may use the approximation in part (a) for your analysis.

(c) What happens to the maximum stable time step for forward Euler, i.e. the an-
swer from b, when you double the spatial grid resolution? With the same doubling,
what happens to the cost of solving the heat equation problem out to some time
T > 0?

2One may show that this scheme has LTE τn = O(k2), but here there is no request to do so.


