
Math 615 NADE (Bueler) 10 March, 2025

Assignment #6

Due Monday, 31 March 2025, at the start of class

Please read sections 5.3–5.9 and 6.1–6.4 from the textbook (R. J. LeVeque, Finite
Difference Methods for Ordinary and Partial Diff. Eqns., SIAM Press 2007).

Problem P24. For an autonomous ODE system u′(t) = f(u(t)), compute the lead-
ing term in the local truncation error of the following 2 methods. For part (a), please
follow the style of Example 5.9.1 For part (b) follow Example 5.11, which handles
scheme (5.30), the explicit midpoint rule. That is, for part (b) you should show the
simpler fact τn = O(k2), without finding the leading-order coefficient.

(a) the 2-step BDF method (5.25).

Hint. Expand around tn+1, to get τn+1.

(b) the explicit trapezoid method,

U∗ = Un + kf(Un)

Un+1 = Un +
k

2

(
f(Un) + f(U∗)

)
,

which is Un+1 = Un + k
2

(
f(Un) + f

(
Un + kf(Un)

))
when combined.

Problem P25. (a) In preparation for problem P26 below, write two solvers
function [tt,zz] = fe1(f,eta,t0,tf,N)
function [tt,zz] = rk4(f,eta,t0,tf,N)

which implement the forward Euler scheme Un+1 = Un + kf(tn, U
n) and the classical

RK4 scheme (5.33), respectively, to solve the ODE IVP in (5.1) and (5.2). The first input
to these solvers is function z = f(t,u).2 The other inputs are a vector of initial
values eta = u(t0), the initial time t0, the final time tf, and the number of equal-
length steps (subintervals) N, respectively. Note that the time step is k = (tf − t0)/N .
Each solver outputs the entire trajectory, so tt is a 1D array of length N + 1 starting
with t0 and ending with tf .3 If η ∈ Rs then zz is a 2D array with s rows and N + 1
columns; each column i gives the solution u(t) at the ith time in tt.

(b) Solve the following problem exactly:

x′′ + 4x = 0, x(0) = 1, x′(0) = 0.

1For the multistep midpoint rule (5.23), Example 5.9 finds leading-order term 1
6k

2u′′′(tn).
2Please use the MATLAB and scipy.integrate variable order here, namely f(t, u), and

not the book order “f(u, t).” Numerical libraries, and their black box solvers like ode45 or
scipy.integrate.solve ivp, generally use f(t, u). I don’t know why LeVeque swapped it, but I
advise against following him.

3Again, this is compatible with how the MATLAB and scipy.integrate solvers do things.

2

Also write this as a first order system, needed when setting-up numerical solvers.

(c) The problem in (b), for example on the interval [t0, tf] = [0, 5], makes a good test
case. Demonstrate that the final-time, absolute numerical error of each solver in (a)
converges at the expected rate as k → 0.

Hint. What is the expected rate is for each method? There is no need to compute local
truncation errors yourself, but you must know their orders.

Problem P26. This is a real application. Perhaps it will help you appreciate our abstract
notation for ODE systems, vector data types in our languages, and higher-order explicit ODE
schemes. This problem has an exact solution,4 but it is not used here.

Consider the problem of two massive bodies (particles) with masses m1 and m2. They
are attracted by gravity only. They travel in a plane so their positions are given by
vector-valued functions xi(t) = (xi(t), yi(t)) for i = 1, 2. Newton’s second law and
Newton’s law of gravity combine to say:

m1x
′′
1 = −Gm1m2

x1 − x2

|x1 − x2|3
(1)

m2x
′′
2 = −Gm1m2

x2 − x1

|x1 − x2|3

We will consider the Earth and the Moon in isolation as our example. Thus the con-
stants are m1 = 5.972×1024 kg, m2 = 7.348×1022 kg, and G = 6.674×10−11 m3 kg−1 s−2.
We measure t in seconds—convert all times to seconds inside the solver!—and xi, yi
in meters. (Please confirm that the units are consistent in system (1).)

(a) By using notation vi = x′
i, wi = y′i for i = 1, 2, write system (1) as a first-order

ODE system of dimension s = 8, with solution column vector u(t) ∈ R8. Use the
component ordering

u(t) =
[
x1(t) y1(t) x2(t) y2(t) v1(t) w1(t) v2(t) w2(t)

]⊤
=

[
u1(t) u2(t) u3(t) u4(t) u5(t) u6(t) u7(t) u8(t)

]⊤
.

That is, write system (1) in the form of (5.1) in the book:5 u′(t) = f(t, u(t)). Then
implement a single function

function z = fearthmoon(t,u)
which computes the right-hand-side function f(t, u) of the ODE system.

(b) Here are some initial conditions which are vaguely like what they are in reality,6

at least if you turned off all the gravity of other bodies and start the Earth at the
origin: t0 = 0, x1(0) = 0, y1(0) = 0, v1(0) = 0, w1(0) = 0, x2(0) = 3.844 × 108 meters,
y2(0) = 0, v2(0) = 0, w2(0) = 1.022×103 m s−1. Use these initial conditions to generate
approximate solutions with tf = 35 days.

4See, for example: https://www.diva-portal.org/smash/get/diva2:630427/FULLTEXT01.pdf
5In fact the right side of this ODE system does not have explicit dependence on t, but, to avoid

confusion in the implementation, use the MATLAB/scipy.integrate variable ordering.
6I searched “earth moon distance meters” and “mean orbital velocity moon.”

https://www.diva-portal.org/smash/get/diva2:630427/FULLTEXT01.pdf

3

Now use each of the solvers from problem P25 with N = 40 and N = 960, i.e. daily
and hourly time steps, respectively. Also use ode45(), or comparable dual-order,
adaptive Runge-Kutta black-box solver, using the default accuracy. That is, generate
five numerical solutions.

Do not, of course, show me lots of numbers. Make basic plots of the computed
trajectories, i.e. the xi, yi values. Describe in a few words what you see, and how
these results relate to the local truncation error of the schemes in P25.

(c) How long in days is a lunar month, using your best computation from part (b)?

Problem P27. (a) For ODE systems of form u′(t) = Au(t) + g(t), where A is a
square matrix and g : R → Rs, build a BDF2 multistep solver for the initial-value
problem:

function [tt,zz] = bdf2(A,g,eta,t0,tf,N)
See equation (5.25). Address the necessary linear algebra by using the default black
box in your language, e.g. backslash in Matlab, or by pre-factoring.7 Also, choose a
scheme for taking the first step which preserves the order of the method.

(b) Solve exactly the same problem as in P25(b), as a test case. Demonstrate that
the final-time numerical error converges at the expected rate as k → 0.

7Either will get full credit, but the latter should be faster for large s.

