
Math 615 NADE (Bueler) 24 February, 2025

Assignment #5

Due Friday, 7 March 2025, at the start of class

Please read textbook1 sections 5.1–5.7, plus Appendices C and D.

These problems on this Assignment use eigenvalues. I assume you have already
had a course in linear algebra, so this is a review topic. Here is a quick review.

As usual, R denotes the real numbers and C the complex numbers. By definition,
a nonzero vector v ∈ Cm is an eigenvector of a real square matrix A ∈ Rm×m if multi-
plication by A merely lengthens or shortens it:

Av
∗
= λv.

The number λ ∈ C is called the eigenvalue corresponding to v. Note that “eigen”
means something like “property of”, so v and λ are in some sense owned by A.

If ∗ holds then the matrix λI −A has a nonzero vector in its null space. That is, any
nonzero multiple of v is sent by λI − A to zero: (λI − A)v = 0. By the fundamental
equivalence in linear algebra, ∗ holds if and only if λI − A is not invertible.

In particular, det(λI−A) = 0, which is a polynomial equation with real coefficients:

p(λ) = det(λI − A).

(Recall we assumed A had real entries.) Finding all the eigenvalues is equivalent to
finding all the roots of the characteristic polynomial p(λ). Generally, these roots are
complex:

in general, even for real A ∈ Rm×m, we have λ ∈ C.
However, because the coefficients of the polynomial are real, if λ is complex (i.e. not
real) then its conjugate λ̄ is also a root of the polynomial and thus an eigenvalue of A.
Note that if A is real and λ is complex then v must also be complex, since ∗ holds.

Fact. If A is symmetric A⊤ = A then the eigenvalues of A are real.

Now suppose λ is an eigenvalue of A. Finding a corresponding eigenvector asks
to find a vector in the null space of a matrix. In particular, the row operations of
Gauss elimination will convert the equation (λI − A)v = 0 into an upper triangular
equation Uv = 0 where U is both upper triangular and has at least one row of zeros.
(This is because λI − A is not invertible.) The matrix equation Uv = 0 can be used to
generate every eigenvector corresponding to λ, the eigenspace for λ. This eigenspace
has dimension at least one.

Appendices C and D cover more advanced eigen-topics. On this Assignment you
will use the basic ideas in section D.3 on matrix exponentials.

1R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Diff. Eqns., SIAM Press 2007
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Problem P18. (a) Compute by hand the eigenvalues and eigenvectors of

A =

 0 −1 −1
−1 0 1
−1 1 0

 .

Show all your work. (Hint: The characteristic polynomial has integer roots. You may check
your work with MATLAB.)

(b) Continuing with the same matrix A, do the following using MATLAB etc., and
show the command-line session or code: Choose a vector u ∈ R3 at random, for
instance u = randn(3,1). Apply A to it 50 times: w = A50u. Now compute
∥Aw∥2/∥w∥2. You will get the number 2. Why? Explain in several sentences, using
equations to make it clear.

Hint for (b). The eigenvectors of a symmetric matrix form a basis. Any vector can be written
in this basis. On the other hand, multiplication by this A stretches one basis vector much
more than the others.

(c) Note that w = A50u from part (b) is very large in norm. Why? For a random u
and this matrix A, give an upper bound on the norm of the vector Aku for large k.

Problem P19. This problem considers the eigenvalues of non-symmetric real matrices,
which are very frequently seen when solving systems of linear (or linearized) ODEs. Do not
show me the matrices! Your solution is your code and your percentage estimates.

Write a short program that computes at least 100 random 3× 3 matrices with real en-
tries which are independent, normally-distributed, mean zero, variance one random
numbers. (In MATLAB, A = randn(3,3) generates such a matrix.) For each ma-
trix, compute its eigenvalues numerically—in MATLAB: eig(A)—and determine if
they are all real or if at least one eigenvalue is complex. What percentage of such
random matrices have exclusively real eigenvalues? What percentage of such ran-
dom matrices are symmetric, e.g. have ∥A − A⊤∥ < 10−10? What percentage of such
random matrices are not invertible, e.g. have | det(A)| < 10−10?

Problem P20. (a) The ODE IVP

v′′ = −9v, v(0) = v0, v′(0) = w0

has solution v(t) = v0 cos(3t) +
w0

3
sin(3t). Verify this.

(b) Construct the solution a second time by first rewriting the ODE as a first-order
system u′ = Au. Then compute the solution u(t) = eAtu(0) by using equation (D.30)
in Appendix D. Confirm that you get the same result as in (a).

Problem P21. Check that the solution u(t) given by Duhamel’s principle, equation
(5.8) in the textbook, satisfies ODE (5.6) and the initial condition u(t0) = η.

Hint. Look up the Leibniz rule for differentiating an integral. To understand and explain
the simple result of differentiating the matrix exponential, note you can differentiate the
absolutely-convergent Taylor series (D.31), in Appendix D, term by term.
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Problem P22. Consider the ODE system

u′
1 = 2u1,

u′
2 = 3u1 − 2u2

with initial conditions at t = 0: u1(0) = a, u2(0) = b. Solve this system two ways as
follows.

(a) Solve the first equation, using its initial condition. Insert this into the second
equation to get a nonhomogeneous linear ODE for u2. Solve using Duhamel’s princi-
ple, equation (5.8) but in the scalar case.

(b) Write the system as u′ = Au, compute the matrix exponential, and get the
solution in the form of equation (D.30) in Appendix D.

Hints. The diagonalization of A can be done by hand. Simplify the results of each part
sufficiently to see the same solution.

Problem P23. This problem is to help you read section 5.2. You have to deal with no-
tation, and partial derivatives, and matrices, and norms. The vector ∞-norm is defined in
equation (A.3). For an m × m matrix A, the matrix ∞-norm is computed by ∥A∥∞ =
max1≤i≤m

∑m
j=1 |aij|, the maximum (absolute) row sum, equation (A.10b).

(a) For Example 5.1 on pages 113–114, note that the system can be written in first-
order system form u′(t) = f(u(t), t) for u(t) ∈ R3. (The form is given on page 114.)
Compute fu(u, t), which is the Jacobian matrix.

(b) Let η = (0, 0, 0)⊤. Let D = {(u, t) : ∥u − η∥∞ ≤ 10, 0 ≤ t ≤ 1}. Compute the
∞-norm Lipschitz constant

L = max
(u,t)∈D

∥fu(u, t)∥∞.


