Assignment #1

Due Wednesday, 22 January 2023, at the start of class

Please read sections 1.1–1.4, 2.1–2.4, and Appendix A from the textbook.¹ The Problems on this assignment are designed to encourage review of important prerequisite topics. In fact, please find three prerequisite textbooks, or their online equivalents:

- Find a **calculus** book.
- Find an introductory textbook on **ordinary differential equations** (ODEs).
- Find an introductory textbook on linear algebra.

You will need these references throughout the semester.

For this Assignment, please review these mathematical topics:

- Taylor's theorem with the remainder formula. This may be best explained by an introductory numerical analysis textbook.
- Solution of linear, homogeneous, and constant-coefficient ODEs.
- Euler's method for approximately solving first-order systems of ODEs, from an initial value.

This Assignment also requires that you get started in the programming language of your choice. Recommended: MATLAB, OCTAVE, PYTHON, or JULIA.

Problem P1. Calculate $129^{1/7}$ to within 10^{-5} of the exact value *without* any computing machinery except a pencil or pen. Prove that your answer has this accuracy. (*Hint: Taylor on* $f(x) = x^{1/7}$, *with a carefully-chosen base point. Note* 10^{-5} *is the maximum absolute error. Feel free to use a computer to* check *your by-hand value, but otherwise this is not a computer question.*)

Problem P2. Assume f' is continuous. Derive the remainder formula

(1)
$$\int_0^a f(x) \, dx = af(0) + \frac{1}{2}a^2 f'(\nu)$$

for some (unknown) ν between zero and *a*. (*Hint: Start by showing* $f(x) = f(0) + f'(\xi)x$ where $\xi = \xi(x)$ is some number between 0 and *x*. Then integrate.) Use at least two sentences to explain the meaning of (1) as an approximation to the integral. That is, answer the question "What properties of f(x) or *a* make the left-endpoint rule $\int_0^a f(x) dx \approx af(0)$ more or less accurate?"

Problem P3. Work at the command line, in the programming language of your choice, to compute a finite sum approximation to

$$\sum_{n=1}^{\infty} \frac{\arctan(\cos n)}{n^3 + 1}.$$

¹R. J. LeVeque, *Finite Difference Methods for Ordinary and Partial Diff. Eqns.*, SIAM Press 2007

Compute the partial sums for N = 10 and N = 100 terms. Turn your command-line work into a function mysum(N), defined in a file mysum.m (or similar), and check that it yields the same numbers. Turn in both the command line session and the code. (*These can be very brief.*) How close do you think the N = 100 partial sum is to the infinite sum?

Problem P4. *Please do not waste paper by turning in tables of numbers unless specifically asked! Here, check that you have the same numbers as in Table 1.1, but don't turn in a table.*

Reproduce Figure 1.2 on page 6 of the textbook. In particular, write a code which generates the data in Table 1.1 by doing the calculations described by Example 1.1, with $u(x) = \sin x$ and $\bar{x} = 1$. Then generate the Figure, which has logarithmic scaling on both axes. Make sure to label the axes as shown, and also put in the labels " D_0 " etc. in approximately the right locations. (*Use* text *in Matlab.*) The data should be shown as markers, but the lines between can be generated however is convenient. Turn in both the code and the figure you generate.

Problem P5. Observe that you are making a prediction of y(t) at t = 4, given initial data and a precise "law" about how y(t) evolves in time, namely the differential equation.

Solve, by hand, the ODE initial value problem

(2)
$$y'' + 4y' - 5y = 0, \quad y(2) = 0, \quad y'(2) = -1,$$

for the solution y(t). Then find y(4). Give a reasonable by-hand sketch on t, y axes which shows the initial values, the solution, and the value y(4).

Problem P6. Using Euler's method for approximately solving ODEs, write your own program to solve initial value problem (2) to find y(4). A first step is to convert the second-order ODE into a system of two first-order ODEs. Use a few different step sizes, decreasing as needed, so that you get apparent three-digit accuracy. (*You may use a black-box ODE solver as a 3rd method to* check *your work, but don't turn this in.*)