Assignment \#7

Due Monday, 10 April 2023, at the start of class

Please read textbook ${ }^{1}$ Chapters 6 and 7. Within this material we are de-emphasizing the discussion of multistep methods, so full understanding of sections 5.9, 6.4, 7.3, and 7.6.1 is not expected. Basically, full understanding of the other sections is expected. In any case, actually reading these Chapters is going to be important to success on this and later Assignments.

Problem P30. Consider the " θ-methods" for $u^{\prime}=f(t, u)$, namely

$$
U^{n+1}=U^{n}+k\left[(1-\theta) f\left(t_{n}, U^{n}\right)+\theta f\left(t_{n+1}, U^{n+1}\right)\right],
$$

where $0 \leq \theta \leq 1$ is a fixed parameter. ${ }^{2}$
a) Cases $\theta=0,1 / 2,1$ are all familiar methods. Name them.
b) Find the (absolute) stability regions for $\theta=0,1 / 4,1 / 2,3 / 4,1$. (Hint. Write the complex number $z=k \lambda$ as $z=x+i y$. Find the circles!)
c) Show that the θ-methods are A -stable for $\theta \geq 1 / 2$.

Problem P31. Consider this Runge-Kutta method, a one-step and implicit interpretation of the multistep midpoint method:

$$
\begin{aligned}
U^{*} & =U^{n}+\frac{k}{2} f\left(t_{n}+k / 2, U^{*}\right), \\
U^{n+1} & =U^{n}+k f\left(t_{n}+k / 2, U^{*}\right)
\end{aligned}
$$

The first stage is backward Euler to determine an approximation to the value at the midpoint in time. The second stage is a midpoint method using this value.
a) Determine the order of accuracy of this method. That is, compute the truncation error accurately enough to know the power p in $\tau=O\left(k^{p}\right)$.
b) Determine the stability region. Is this method A-stable? Is it L-stable?

Problem P32. Reproduce Table 7.1. In particular, consider the scalar ODE IVP

$$
u^{\prime}(t)=\lambda(u(t)-\cos (t))-\sin (t), \quad u(0)=1
$$

with the particular value $\lambda=-2100$. Use an implementation of forward Euler, for example from your or my solutions to Assignment \#6, to compute approximations of $u(T)$ for $T=2$, for the given values of k, and report the final-time numerical errors

[^0]$\left|U^{N}-u(T)\right|$ as in the Table. Confirm by this experiment ${ }^{3}$ that there is a critical value of k around 0.00095 where the error finally drops from enormous values to something comparable to, then much smaller than, the solution magnitude itself.

Problem P33. For a famously stiff problem, consider the heat PDE

$$
\begin{equation*}
u_{t}=u_{x x} \tag{1}
\end{equation*}
$$

Here $u(t, x)$ is the temperature in a rod of length one $(0 \leq x \leq 1)$ and we set boundary temperatures to zero $(u(t, 0)=0$ and $u(t, 1)=0)$. For an initial temperature distribution we set one part hotter than the rest:

$$
u(0, x)= \begin{cases}1, & 0.25<x<0.5 \\ 0, & \text { otherwise }\end{cases}
$$

Suppose we seek $u(1, x)$, i.e. we set $t_{f}=1$.
We apply the method of lines (MOL) to (1). That is, we discretize the spatial (x) derivatives using the notation from Chapter 2 . Specifically, use $m+1$ subintervals, let $h=1 /(m+1)$, and let $x_{j}=j h$ for $j=0,1,2, \ldots, m+1$. Now $U_{j}(t) \approx u\left(t, x_{j}\right)$. By eliminating unknowns $U_{0}=0$ and $U_{m+1}=0$, and keeping the time derivatives as ordinary derivatives, from (1) we get a linear ODE system of dimension m,

$$
\begin{equation*}
U(t)^{\prime}=A U(t) \tag{2}
\end{equation*}
$$

where $U(t) \in \mathbb{R}^{m}$ and A is exactly the matrix in the textbook's equation (2.10). For a given m, note $U(0)$ is computed from the above formula for $u(0, x)$.
a) Implement both forward and backward Euler on (2). For BE, store A using sparse storage and solve the equation using backslash or another linear solver which will automatically detect that the matrix is tridiagonal and solve it efficiently.
b) Now consider the $m=99$ case, so $h=0.01$, and let $k=t_{f} / N=1 / N$ be the time step length. For BE, compute and show the solution using $N=100$ time steps. For FE, $N=100$ will generate extraordinary explosion. (Confirm this but don't show it.) Determine the largest-possible absolutely-stable time step k from the eigenvalues of A and the stability region of FE. Finally, compare the computational costs of the two runs by counting floating-point multiplications. ${ }^{4}$ You will conclude that an implicit is indeed effective in this case.

1 point of extra credit) Find the exact solution, presumably using a Fourier sine series. Plot it beside the $N=100 \mathrm{BE}$ solution. BE looks pretty good on this problem!

[^1]
[^0]: ${ }^{1}$ R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Diff. Eqns., SIAM Press 2007
 ${ }^{2}$ Note that I did all parts of this problem P30 by hand.

[^1]: ${ }^{3}$ Of course, the book explains the effect logically, which is the major point of Chapter 7, at least as it applies to forward Euler: $|1+k \lambda| \leq 1$ only if $k|\lambda|<2$ or equivalently $k<2 /|\lambda|=2 / 2100=0.00095238$.
 ${ }^{4}$ For an $m \times m$ tridiagonal matrix $A, A v$ costs $3 m$ multiplications while $A^{-1} v$ costs $5 m$ multiplications.

