Assignment #7

Due Monday, 10 April 2023, at the start of class

Please read textbook¹ Chapters 6 and 7. Within this material we are de-emphasizing the discussion of multistep methods, so full understanding of sections 5.9, 6.4, 7.3, and 7.6.1 is not expected. Basically, full understanding of the other sections *is* expected. In any case, *actually reading* these Chapters is going to be important to success on this and later Assignments.

Problem P30. Consider the " θ -methods" for u' = f(t, u), namely

$$U^{n+1} = U^n + k \Big[(1-\theta)f(t_n, U^n) + \theta f(t_{n+1}, U^{n+1}) \Big],$$

where $0 \le \theta \le 1$ is a fixed parameter.²

a) Cases $\theta = 0, 1/2, 1$ are all familiar methods. Name them.

b) Find the (absolute) stability regions for $\theta = 0, 1/4, 1/2, 3/4, 1$. (*Hint.* Write the complex number $z = k\lambda$ as z = x + iy. Find the circles!)

c) Show that the θ -methods are A-stable for $\theta \ge 1/2$.

Problem P31. Consider this Runge-Kutta method, a one-step and implicit interpretation of the multistep midpoint method:

$$U^* = U^n + \frac{k}{2}f(t_n + k/2, U^*),$$
$$U^{n+1} = U^n + kf(t_n + k/2, U^*).$$

The first stage is backward Euler to determine an approximation to the value at the midpoint in time. The second stage is a midpoint method using this value.

a) Determine the order of accuracy of this method. That is, compute the truncation error accurately enough to know the power p in $\tau = O(k^p)$.

b) Determine the stability region. Is this method A-stable? Is it L-stable?

Problem P32. Reproduce Table 7.1. In particular, consider the scalar ODE IVP

$$u'(t) = \lambda (u(t) - \cos(t)) - \sin(t), \qquad u(0) = 1,$$

with the particular value $\lambda = -2100$. Use an implementation of forward Euler, for example from your or my solutions to **Assignment #6**, to compute approximations of u(T) for T = 2, for the given values of k, and report the final-time numerical errors

¹R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Diff. Eqns., SIAM Press 2007

²Note that I did all parts of this problem **P30** by hand.

 $|U^N - u(T)|$ as in the Table. Confirm by this experiment³ that there is a critical value of k around 0.00095 where the error finally drops from enormous values to something comparable to, then much smaller than, the solution magnitude itself.

Problem P33. For a famously stiff problem, consider the heat PDE

$$(1) u_t = u_{xx}$$

Here u(t, x) is the temperature in a rod of length one $(0 \le x \le 1)$ and we set boundary temperatures to zero (u(t, 0) = 0 and u(t, 1) = 0). For an initial temperature distribution we set one part hotter than the rest:

$$u(0, x) = \begin{cases} 1, & 0.25 < x < 0.5, \\ 0, & \text{otherwise.} \end{cases}$$

Suppose we seek u(1, x), i.e. we set $t_f = 1$.

We apply the *method of lines* (MOL) to (1). That is, we discretize the spatial (x) derivatives using the notation from Chapter 2. Specifically, use m + 1 subintervals, let h = 1/(m + 1), and let $x_j = jh$ for j = 0, 1, 2, ..., m + 1. Now $U_j(t) \approx u(t, x_j)$. By eliminating unknowns $U_0 = 0$ and $U_{m+1} = 0$, and keeping the time derivatives as ordinary derivatives, from (1) we get a linear ODE system of dimension m,

$$U(t)' = AU(t)$$

where $U(t) \in \mathbb{R}^m$ and *A* is *exactly* the matrix in the textbook's equation (2.10). For a given *m*, note U(0) is computed from the above formula for u(0, x).

a) Implement both forward and backward Euler on (2). For BE, store *A* using sparse storage and solve the equation using backslash or another linear solver which will automatically detect that the matrix is tridiagonal and solve it efficiently.

b) Now consider the m = 99 case, so h = 0.01, and let $k = t_f/N = 1/N$ be the time step length. For BE, compute and show the solution using N = 100 time steps. For FE, N = 100 will generate extraordinary explosion. (Confirm this but don't show it.) Determine the largest-possible absolutely-stable time step k from the eigenvalues of A and the stability region of FE. Finally, compare the computational costs of the two runs by counting floating-point multiplications.⁴ You will conclude that an implicit is indeed effective in this case.

1 point of extra credit) Find the exact solution, presumably using a Fourier sine series. Plot it beside the N = 100 BE solution. BE looks pretty good on this problem!

³Of course, the book explains the effect logically, which is the major point of Chapter 7, at least as it applies to forward Euler: $|1+k\lambda| \le 1$ only if $k|\lambda| < 2$ or equivalently $k < 2/|\lambda| = 2/2100 = 0.00095238$.

⁴For an $m \times m$ tridiagonal matrix A, Av costs 3m multiplications while $A^{-1}v$ costs 5m multiplications.