
Math 615 NADE (Bueler) version 2: 8 March, 2023

Assignment #6

Due Wednesday, 29 March 2023, at the start of class

Please read textbook1 sections 5.3–5.8 and 6.1–6.4.

Problem P27. a) In preparation for problem P29 below, write two solvers
function [tt,zz] = feuler(f,eta,t0,tf,N)
function [tt,zz] = rk4(f,eta,t0,tf,N)

which implement schemes (5.19) and (5.33), respectively, to solve the ODE IVP in
(5.1) and (5.2). The first input to these solvers is function z = f(t,u).2 The
other inputs are a vector of initial values eta = u(t0), the initial time t0, the final
time tf, and the number of equal-length steps (subintervals) N; the time step is ∆t =
k = (tf − t0)/N . Each solver outputs the entire trajectory, so tt is a 1D array of length
N + 1 starting with t0 and ending with tf . If η ∈ Rs then zz is a 2D array with s rows
and N + 1 columns; each column i gives the solution u(t) at the ith time in tt.

b) Solve the following simple problem exactly:

x′′ + x = 0, x(0) = 1, x′(0) = 0.

Hint. You will need to find the exact solution, and also write this as a first order
system for setting-up a numerical solution in part c).

c) The problem in b), for example on the interval [t0, tf] = [0, 2], makes a good test
case. Demonstrate that the final-time numerical error of each solver in (a) converges
at the expected rate as the timestep k → 0.

Hint. What is the expected rate is for each method? There is no need to compute local
truncation errors yourself, but you must know their orders.

Problem P28. Compute the leading term in the local truncation error of the follow-
ing methods. For parts a) and b), please follow the style of Example 5.9,3 wherein
you learn the coefficient in the leading order term. For part c) you can follow the
style of Example 5.11, which gets the simpler fact τn = O(k2), without knowing the
leading-order coefficient.

a) the 2-step BDF method (5.25).

Hint. Expand around tn+1, to get τn+1.

b) the trapezoidal method (5.22).

1R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Diff. Eqns., SIAM Press 2007
2Use the MATLAB and scipy.integrate.ode variable order here not the book order “f(u, t).”
3For the multistep midpoint rule (5.23), Example 5.9 finds τn = 1

6k
2u′′′(tn) + O(k4). The simpler

statement τn = O(k2) is also true, but in a) and b) I am asking for a bit more.

2

Hint. Expand around the “half-way” time t∗ = tn +
1
2
k, to get τ ∗.

c) the explicit trapezoid method,

Un+1 = Un +
k

2

(
f(Un) + f

(
Un + kf(Un)

))
.

Hint. Note how Example 5.11 handles scheme (5.30), the explicit midpoint rule.

Problem P29. This is a real application. Perhaps it will help you appreciate our abstract
notation for ODE systems, vector data types in our languages, and higher-order explicit ODE
schemes. This problem has an exact solution,4 but it is not used here.

Consider the problem of two massive bodies (particles) with masses m1 and m2.
They are attracted by gravity only. They travel in a plane so their positions are given
by vector-valued functions xi(t) = (xi(t), yi(t)) for i = 1, 2. Newton’s second law and
Newton’s law of gravity combine to say:

m1x
′′
1 = −Gm1m2

x1 − x2

|x1 − x2|3
(1)

m2x
′′
2 = −Gm1m2

x2 − x1

|x1 − x2|3

We will consider the Earth and the Moon in isolation as our example. Thus the
constants are

m1 = 5.972× 1024 kg,

m2 = 7.348× 1022 kg,

G = 6.674× 10−11 m3 kg−1 s−2,

and we measure t in seconds and xi, yi in meters. (Though this will not be graded, please
confirm that the units balance in equations (1).)

a) By using notation vi = x′
i, wi = y′i for i = 1, 2, write system (1) as a first-order

ODE system of dimension s = 8, with solution column vector u(t) ∈ R8. Use the
component ordering

u(t) =
[
x1(t) y1(t) x2(t) y2(t) v1(t) w1(t) v2(t) w2(t)

]⊤
=

[
u1(t) u2(t) u3(t) u4(t) u5(t) u6(t) u7(t) u8(t)

]⊤
.

That is, write system (1) in the form of (5.1) in the book:5 u′(t) = f(t, u(t)). Then
implement a single function

function z = fearthmoon(t,u)
which computes the right-hand-side function f(t, u) of the ODE system.

b) For initial conditions which are vaguely like what they are in reality,6 at least if
you turned off all the gravity of other bodies and start the Earth at the origin, suppose

4See, for example: https://www.diva-portal.org/smash/get/diva2:630427/FULLTEXT01.pdf
5In fact the right side of this ODE system does not have explicit dependence on t, but, to avoid

confusion in the implementation, use the MATLAB and scipy.integrate.ode variable ordering.
6I searched “earth moon distance meters” and “mean orbital velocity moon.”

https://www.diva-portal.org/smash/get/diva2:630427/FULLTEXT01.pdf

3

t0 = 0 and x1(0) = 0, y1(0) = 0, v1(0) = 0, w1(0) = 0 and x2(0) = 3.844 × 108 meters,
y2(0) = 0, v2(0) = 0, w2(0) = 1.022×103 m s−1. Use these initial conditions to generate
approximate solutions with tf = 40 days.7

Now use each of the solvers from problem P27 with N = 40 and N = 960, i.e. daily
and hourly time steps, respectively. Also use ode45(), or other black-box solver,
using the default accuracy. That is, generate five numerical solutions.

Do not, of course, show me lots of numbers. Make basic plots of the computed
trajectories, i.e. the xi, yi values. Describe in a few words what you see, and how
these results relate to the local truncation error of the schemes in P27.

c) How long is a lunar month, if we used your computations in part b)?

7Convert to seconds!

